This documentation page applies to an outdated AMT version (1.2.0). Click here for the most recent page.
function [V,Y,OAE,CF]=verhulst2012(sign,fs,fc,spl,varargin)
%VERHULST2012 Process a signal with the cochlear model by Verhulst et. al. 2012
% Usage: output = verhulst2012(insig,fs,fc,varargin)
%
% Input parameters:
% sign : the input signal to be processed [time channel].
% Each channel will be independently processed in parallel.
% fs : sampling rate (Hz)
% fc : list of frequencies specifying the probe positions on
% the basilar membrane, or 'all' to probe all 1000
% cochlear sections
% spl : array of SPLs that correspond to value 1 of the correspondent input channel
%
% Output parameters:
% V : velocity of the basilar membrane sections V(time,section,channel)
% Y : displacement of the basilar membrane sections Y(time,section,channel)
% OAE : otto-acoustic emissions given by sound pressure at the middle ear
% CF : center frequencies of the probed basiliar membrane sections
%
% This function computes the basilar membrane displacement and the
% velocity of the movement at different positions employing a faster
% implementation of the nonlinear time-domain model of cochlea by
% Verhulsts, Dau, Shera 2012, through the method described in Altoe et
% al. 2014
%
% VERHULST2012 accepts the following optional parameters:
%
% 'normalizeRms',n array to control the normalization of each channel. With value 1
% normalize the energy of the signal, so the SPL corresponds to the RMS of the signal (default 0)
%
% 'subject',s the subject number controling the cochlear irregulatiries (default 1)
%
% 'irr',i array that enable (1) or disable (0) irregularities and nonlinearities for each simulation (default 1)
%
%
% The processing is implemented as follows:
%
% 1) the input signal is resampled to the 96 kHz sampling rate employed in the cochlea model
%
% 2) the list of frequencies in fc are converted in to probe
% positions in a manner that the frequencies are divided evenly into
% low and high frequency categories.
%
% 3) the signals are processed in parallel
%
% 4) the values obtained are resampled back to the original sampling
% rate
%
%
% Requirements and installation:
% ------------------------------
%
% 1) Python >2.6 is required with numpy and scipy packages. On Linux, use sudo apt-get install python-scipy python-numpy
%
% 2) Compiled files with a C-compiler, e.g. gcc. In amtbase/src/verhulst start make (Linux) or make.bat (Windows)
%
%
%
% References:
% S. Verhulst, T. Dau, and C. A. Shera. Nonlinear time-domain cochlear
% model for transient stimulation and human otoacoustic emission. J.
% Acoust. Soc. Am., 132(6):3842 -- 3848, 2012.
%
% A. Altoè, S. Verhulst, and V. Pulkki. Transmission line cochlear
% models: improved accuracy and efficiency. J. Acoust. Soc. Am.,
% 136:EL302--EL308, 2014.
%
%
% See also: verhulst2015 verhulst2018 demo_verhulst2012
% verhulst2018_ihctransduction verhulst2015_cn
% verhulst2015_ic verhulst2018_auditorynerve exp_verhulst2012
% verhulst2012 verhulst2015
% verhulst2018 middleearfilter data_takanen2013 takanen2013_periphery
% exp_osses2022 exp_takanen2013 takanen2013
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/models/verhulst2012.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB M-Signal PYTHON3 C
% #Author: Alessandro Altoe'
definput.import={'verhulst2012'}; % load defaults from arg_verhulst2012
[flags,keyvals] = ltfatarghelper([],definput,varargin);
if isempty(keyvals.normalize),
[channels,idx]=min(size(sign));
normalizeRMS=zeros(channels,1);
else
normalizeRMS=keyvals.normalize;
end
if isempty(keyvals.irr)
[channels,idx]=min(size(sign));
irregularities=ones(1,channels);
else
irregularities = keyvals.irr;
end
subject=keyvals.subject;
modfs=96000;
sectionsNo=1000;
[channels,idx]=min(size(sign));
if(idx==2) %transpose it (python C-style row major order)
sign=sign';
end
stim=zeros(channels,length(resample(sign(1,:),modfs,fs)));
for i=1:channels
stim(i,:)=resample(sign(i,:),modfs,fs);
if normalizeRMS(i)
s_rms=rms(stim(i,:));
stim(i,:)=stim(i,:)./s_rms;
end
end
% sheraPo=0.061;
if(isstr(fc) && strcmp(fc,'all')) %if probing all sections 1001 output (1000 sections plus the middle ear)
p=sectionsNo;
else %else pass it as a column vector
[p,idx]=max(size(fc));
if(idx==2)
fc=fc';
end
fc=round(fc);
end
len=length(stim(1,:));
% probes=fc; Fs=modfs; sheraPo=0.061;
% path=fileparts(which('verhulst2012'));
% path=fileparts(path);
% act_path=pwd;
% cd(strcat(path,'/environments/verhulst2012/'));
% save('input.mat','stim','Fs','channels','spl','subject','sheraPo','irregularities','probes','-v7');
% system('python run_cochlear_model.py');
in.stim=stim; in.Fs=modfs; in.channels=channels; in.spl=spl;
in.subject=subject; in.sheraPo=0.061; in.irregularities=irregularities;
in.probes=fc;
out.v=[p len channels];
out.y=[p len channels];
out.E=[len 1 channels];
out.F=[p 1];
output=amt_extern('Python','verhulst2012','run_cochlear_model.py',in,out);
Vs=output.v;
Ys=output.y;
OAEs=squeeze(output.E);
CF=output.F;
% Vs=zeros(p,len,channels);
% Ys=zeros(p,len,channels);
% OAEs=zeros(len,channels);
% for i=1:channels
% fname=strcat('out/v',int2str(i),'.np');
% f=fopen(fname,'r');
% Vs(:,:,i)=fread(f,[p,len],'double','n');
% fclose(f);
% fname=strcat('out/y',int2str(i),'.np');
% f=fopen(fname,'r');
% Ys(:,:,i)=fread(f,[p,len],'double','n');
% fclose(f);
% fname=strcat('out/E',int2str(i),'.np');
% f=fopen(fname,'r');
% OAEs(:,i)=fread(f,[len,1],'double','n');
% fclose(f);
% if(i==1)
% fname=strcat('out/F',int2str(i),'.np');
% f=fopen(fname,'r');
% CF=fread(f,[p,1],'double','n');
% fclose(f);
% end
% end
rl=length(resample(stim(1,:),fs,modfs));
V=zeros(rl,p,channels);
Y=zeros(rl,p,channels);
OAE=zeros(rl,channels);
for i=1:channels
V(:,:,i)=resample(squeeze(Vs(:,:,i))',fs,modfs);
Y(:,:,i)=resample(squeeze(Ys(:,:,i))',fs,modfs);
OAE(:,i)=resample(squeeze(OAEs(:,i)),fs,modfs);
end
% cd(act_path);