function plot_modspecgram(f,fs,varargin)
%PLOT_MODSPECGRAM Modulation spectrogram
% Usage: plot_modspecgram(f,fs);
% plot_modspecgram(f,fs,...);
%
% `plot_modspecgram(f,fs)` plot the modulation spectogram of the signal *f* sampled
% at a sampling frequency of *fs* Hz.
%
% `C=plot_modspecgram(f,fs, ... )` returns the image to be displayed as a matrix. Use
% this in conjunction with `imwrite` etc.
%
% The function takes the following additional arguments
%
% 'win',g Use the window *g*. See the help on `gabwin` for some
% possiblities. Default is to use a Gaussian window
% controlled by the `'thr'` or `'wlen'` parameters listed below.
%
% 'tfr',v Set the ratio of frequency resolution to time resolution.
% A value $v=1$ is the default. Setting $v>1$ will give better
% frequency resolution at the expense of a worse time
% resolution. A value of $0<v<1$ will do the opposite.
%
% 'wlen',s Window length. Specifies the length of the window
% measured in samples. See help of PGAUSS on the exact
% details of the window length.
%
% 'image' Use `imagesc` to display the spectrogram. This is the
% default.
%
% 'clim',clim Use a colormap ranging from `clim(1)` to `clim(2)`. These
% values are passed to `imagesc`. See the help on `imagesc`.
%
% 'dynrange',r Use a colormap in the interval [chigh-r,chigh], where
% chigh is the highest value in the plot.
%
% 'fmax',fmax Display *fmax* as the highest frequency.
%
% 'mfmax',mfmax
% Display *mfmax* as the highest modulation frequency.
%
% 'xres',xres Approximate number of pixels along x-axis / time.
%
% 'yres',yres Approximate number of pixels along y-axis / frequency
%
% 'contour' Do a contour plot to display the spectrogram.
%
% 'surf' Do a surf plot to display the spectrogram.
%
% 'mesh' Do a mesh plot to display the spectrogram.
%
% 'colorbar' Display the colorbar. This is the default.
%
% 'no_colorbar' Do not display the colorbar.
%
% 'interp' Interpolate the image to get the desired
% x-resolution. Turn this off by using 'no_interp'
%
% The parameters `'dynrange'` and `'mfmax'` may be speficied first on the
% argument line, in that order.
%
% Examples:
% ---------
%
% The first example shows a Modulation spectrogram of modulated wide band
% noise. The modulation frequency is 50 Hz and the signal is sampled at
% 44.1 kHz:::
%
% fm = 50; % Modulation frequency
% l = 2; % Length of the signal in seconds
% fs = 44100; % Sampling frequency
% t = 0:1/fs:l;
% n = length(t);
% noise = 1-2*randn(1,n);
% modnoise = noise.*(1+cos(2*pi*t*fm));
% plot_modspecgram(modnoise,fs,90)
% title('Sinusoidally Modulated Noise')
%
% The second example shows a modulation spectrogram of a speech signal
% sampled at 16 kHz:::
%
% plot_modspecgram(greasy,16000,60,500)
% title('Greasy')
%
% The third example shows a modulation spectrogram of a modulated sinusoid
% with a carrier frequency of 5 kHz. FIXME: What is the modulation
% frequency:::
%
% fm = 50; % Modulation frequency
% l = 2; % Length of the signal in seconds
% fs = 44100; % Sampling frequency
% fc = 5000; % Carrier frequency
% t = 0:1/fs:l;
% s = sin(2*pi*t*fc);
% smod = s.*(1+0.5*cos(2*pi*t*fm));
% plot_modspecgram(s,fs,50,2*fm,'fmax',2*fc)
%
% See also: plot_audspecgram
if nargin<2
error('%s: Too few input parameters.',upper(mfilename));
end;
% Define initial value for flags and key/value pairs.
definput.flags.wlen={'no_wlen','wlen'};
definput.flags.plottype={'image','contour','mesh','pcolor'};
definput.flags.clim={'no_clim','clim'};
definput.flags.log={'db','lin'};
definput.flags.colorbar={'colorbar','no_colorbar'};
definput.flags.interp={'interp','no_interp'};
definput.keyvals.tfr=1;
definput.keyvals.win=[];
definput.keyvals.wlen=0;
definput.keyvals.thr=0;
definput.keyvals.clim=[0,1];
definput.keyvals.climsym=1;
definput.keyvals.fmax=[];
definput.keyvals.mfmax=[];
definput.keyvals.dynrange=[];
definput.keyvals.xres=800;
definput.keyvals.yres=600;
[flags,kv]=ltfatarghelper({'dynrange','mfmax'},definput,varargin,mfilename);
l = (length(f)-1)/fs; % Length of the signal (in seconds)
% Downsample
if ~isempty(kv.fmax)
resamp=kv.fmax*2/fs;
f=fftresample(f,round(length(f)*resamp));
fs=kv.fmax*2;
end;
M=kv.yres*2;
if ~isempty(kv.mfmax)
% Choose "a" such that the subband sampling rate mathes the desired
% mfmax.
a=max(round((fs/2)/kv.mfmax),1);
else
% Choose "a" such that the number of pixels is matched.
a=max(round(length(f)/2/kv.xres),1);
end;
% Set an explicit window length, if this was specified.
if flags.do_wlen
kv.tfr=kv.wlen^2/L;
end;
if isempty(kv.win)
g={'gauss',kv.tfr};
end;
% Discrete Gabor transform
fdgt = dgtreal(f,g,a,M);
L=size(fdgt,2)*a/fs; % Length of the transform, in seconds
nwin = size(fdgt,2); % Number of time windows
nfbin = size(fdgt,1); % Number of frequency bins
% Do fft along second dimension (time). Normalize so different values of
% "a" does not change the magnitude.
gram=fftreal(abs(fdgt),[],2);
% Go to dB
gram = 20*log10(abs(gram));
if flags.do_interp
gram=dctresample(gram,kv.xres,2);
end;
subbandfs=fs/a;
mfmax=subbandfs/2;
mfbins=size(gram,2);
% 'dynrange' parameter is handled by thresholding the coefficients.
if ~isempty(kv.dynrange)
maxclim=max(gram(:));
gram(gram<maxclim-kv.dynrange)=maxclim-kv.dynrange;
end;
%% Plotting the modulation spectrum
% Frequency axis
yr = linspace(0,fs/2,nfbin);
xr = linspace(0,mfmax,mfbins);
switch(flags.plottype)
case 'image'
if flags.do_clim
imagesc(xr,yr,gram,kv.clim);
else
imagesc(xr,yr,gram);
end;
case 'contour'
contour(xr,yr,gram);
case 'surf'
surf(xr,yr,gram);
case 'pcolor'
pcolor(xr,yr,gram);
end;
if flags.do_colorbar
colorbar;
end;
axis('xy');
title('Temporal modulation spectrogram')
xlabel('Modulation Frequency (Hz)')
ylabel('Frequency (Hz)')