function [OUT_struct] = exp_bischof2023(varargin)
%EXP_BISCHOF2023 experiments from Bischof et al. 2023
% Usage: [OUT_struct] = exp_bischof2023(flags)
%
%
% Input parameters:
% flags : string to reproduce specific figure from Bischof et al. (2023)
% ('fig3','fig4','fig7' or 'fig8')
%
% Output parameters:
% OUT_struct : structure with all predicted SNRs, BMLDs and
% better ear SNRs for the experiment reported in
% Bischof et al. (2023).
%
%
% EXP_BISCHOF2023
% runs the model bischof2023 for DYNamic Binaural Unmasking (DynBU)with
% binaural recordings of the original stimuli used in the detection
% experiment and returns an output sturcture containing the model
% predictions as well as the experimental data for further analysis or
% plotting of the results.
%
%
% The following flags can be specified
%
% 'fig3' Reproduce Fig.3:
% Medians and quartiles of the measured binaural detection
% thresholds of a reverberant harmonic complex tone for
% different truncations of the room impule response in the
% presence of an anechoic bandpass noise with 60 dB SPL from
% the front. Solid lines indicate thresholds for a collocated
% target sound source at 0°, dashed lines for a target sound
% source at 60°. Data in blue correspond to measured
% thresholds with an absorption coefficient of 0.5, data in
% red for an absorption coefficient of 0.1.
%
% 'fig4' Reproduce Fig.4:
% Medians and quartiles of the measured binaural detection
% thresholds of a reverberant harmonic complex tone located
% at 0° for different time conditions of cut early
% reflections from the room impulse response in the presence
% of an anechoic bandpass noise with 60 dB SPL from the
% front. Data in blue correspond to measured thresholds with
% an absorption coefficient of 0.8, data in red for an
% absorption coefficient of 0.1.
%
% 'fig7' Reproduce Fig.7:
% Predictions of bischof2023 are shown with green squares
% connected with dashed lines along with measured thresholds
% reported in Figure 3 and Figure 4. The left column shows
% data for an absorpiton coefficient of 0.1, the right column
% for an absorption coefficient of 0.5 respectively. The
% first row refers to data with a collocated target and noise
% at 0°, the second row for a target at 60° and a noise
% masker at 0°, both for different truncations of the room
% impule response. The thirs row refers to data with a
% collocated target and noise at 0° for different time
% conditions of cut early reflections from the room impulse
% response.
%
% 'fig8' Reproduce Fig.8:
% Contributions of better-ear SNR (dark green shaded area)
% and BMLD (light green shaded area) to the overall
% predicted binaural benefit using bischof2023. The overall
% prediction is ploted as detection benefit for all different
% experimental conditions shown in Figure 7. The division of
% the individual panels corresponds to that in Figure 7.
%
%
% Examples:
% ---------
%
% To display Fig.3 use :
%
% exp_bischof2023('fig3');
%
% To display Fig.4 use :
%
% exp_bischof2023('fig4');
%
% To display Fig.7 use :
%
% exp_bischof2023('fig7');
%
% To display Fig.8 use :
%
% exp_bischof2023('fig8');
%
% See also: bischof2023_filterbank data_bischof2023 plot_bischof2023
% bischof2023
%
%
% References:
% N. Bischof, P. Aublin, and B. Seeber. Fast processing models effects of
% reflections on binaural unmasking. Acta Acustica, 2023.
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/experiments/exp_bischof2023.php
% #Author: Norbert F. Bischof (2023)
% #Author: Pierre G. Aublin
% #Author: Bernhard Seeber (2023)
%% check input variables
definput.flags.type = {'missingflag','fig3','fig4','fig7', 'fig8'};
definput.flags.plot = {'plot','no_plot'};
[flags,~] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;
%if nargin < 1; do_plot = 0; end
%% load experimental data for Bischof et al. 2023 if not yet in workspace
if ~exist('expdata','var') == 1
[expdata,fs] = data_bischof2023;
end
%% define additional variables for the experiment in Bischof et al 2023
interf_length = length(expdata.bischof2023_interf); % overall length of interferer signal
target_length = length(expdata.bischof2023_target_cell{1}); % overall length of recorded target signal
% define start sample index for time centered target signal
start_sample = ceil((interf_length - target_length)/2);
interf_sig = expdata.bischof2023_interf(start_sample+1:start_sample+target_length,:);
%% Define Model parameters for bischof2023
Model_params.fs = fs; % sampling frequency
Model_params.f_range = [300,770]; % frequency range to be evaluated
Model_params.Bark_ord = 4; % filter order for gammatone filters
Model_params.Bark_len = 512; % filter length for gammatone filters
Model_params.t_st = 0.012; % short time analysis window in sec
Model_params.t_SLUGGint = 0.225; % time constant for sluggishness integration in sec
Model_params.t_INTint = 0.09; % time constant for intensity integration in sec
%% run bischof2023
% initialize output variables
OUT_struct.pred_SNR_fast_bischof2023 = zeros(size(expdata.bischof2023_target_cell));
OUT_struct.pred_BMLD_fast_bischof2023 = zeros(size(OUT_struct.pred_SNR_fast_bischof2023));
OUT_struct.pred_BE_fast_bischof2023 = zeros(size(OUT_struct.pred_SNR_fast_bischof2023));
% run bischof2023 for all target signals
for ii = 1:numel(expdata.bischof2023_target_cell)
target_sig = expdata.bischof2023_target_cell{ii};
[OUT_struct.pred_SNR_fast_bischof2023(ii),...
OUT_struct.pred_BMLD_fast_bischof2023(ii),...
OUT_struct.pred_BE_fast_bischof2023(ii)] = bischof2023(target_sig,...
interf_sig,...
Model_params);
end
%% add expdata to OUT_struct
OUT_struct.expdata = expdata;
%% do plot
if flags.do_plot
plot_bischof2023(OUT_struct, flags);
end