This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
function msq = exp_steidle2019(varargin)
%EXP_STEIDLE2019 Compares various ITD calculation methods
% Usage: exp_steidle2019(flag)
%
%
% The following flags can be chosen:
%
% 'clean' clean data
%
% 'noisy' noisy data
%
% 'stim' to create the data which was used
%
% 'figure' to create the plots shown in the paper (fig1,...fig9)
%
% 'lowpass' (optional) Decide if lowpass shall be applied.
% lp for lowpass (default), bb for broadband
%
% 'threshlvl' (optional) Set threshold level for 'Threshold' mode in dB.
% Default is -10 dB.
%
%
%
% Requirements:
% -------------
%
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
%
% Examples:
% ---------
%
% To display results for Fig.1 use :
%
% exp_steidle2019('fig1');
%
% To display results for Fig.2 use :
%
% exp_steidle2019('fig2');
%
% To recalculate the data sets use i.e. :
%
% exp_steidle2019('clean','lp');
%
%
% References:
% L. Steidle and R. Baumgartner. Geometrical evaluation of methods to
% approximate interaural time differences by broadband delays. In
% Proceedings of the German Annual Meeting (DAGA), Rostock, DE, Mar 2019.
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/experiments/exp_steidle2019.php
% #Author: Laurin Steidle
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
definput.import={'amt_cache'}; % get the flags of amt_cache
definput.flags.choose = {'clean','noisy','stim',...
'fig1','fig2','fig3','fig4','fig5','fig6','fig7','fig8','fig9'};
definput.flags.lp = {'lp','bb'};
definput.keyvals.threshlvl = -10;
definput.keyvals.butterpoly = 6;
[flags,kv]=ltfatarghelper({},definput,varargin);
%% ---------------calculate-estimation-data-------------------------
% -------------------------------------------------------------------------
% calulates ITDs with all models for 'clean' synthesised IRs
if flags.do_clean
modes = {'Threshold','Cen_e2','MaxIACCr', 'MaxIACCe',...
'CenIACCr', 'CenIACCe', 'CenIACC2e', 'PhminXcor','IRGD'};
n_modes = size(modes,2);
% importing a set of head parameter from ziegelwanger2014
tmp=amt_load('ziegelwanger2014','info.mat');
data=tmp.info.Rotation;
data.radius = data.radius*1e-3; % head radius in meter
data.phi = data.phi*pi/180; % polar angel in radian
data.theta = data.theta*pi/180; % azimut angel in radian
head_idx = 15:15+13; % chosing data subset
n_heads = size(head_idx,2);
% calculating theoretical and estimated itd's for all head param
% ## initiate array
msq = zeros(n_heads,n_modes);
for ii=head_idx % goes thru all head geometries
Obj=amt_load('ziegelwanger2014',['Sphere_Rotation_' data.subjects{ii} '.sofa']);
%calculate theoretically expected ITDs
p0_offaxis = [[data.radius(ii);0; 0; 0; 0;data.phi(ii)+pi/2; data.theta(ii)*pi/180]...
[data.radius(ii);0; 0; 0; 0;data.phi(ii)-pi/2; -data.theta(ii)*pi/180]];
toa_sim_left = ziegelwanger2014_offaxis(p0_offaxis(:,1),Obj.SourcePosition(:,1:2)*pi/180);
toa_sim_right = ziegelwanger2014_offaxis(p0_offaxis(:,2),Obj.SourcePosition(:,1:2)*pi/180);
toadiff_sim = toa_sim_left - toa_sim_right;
for kk = 1:n_modes % goes thru all estimation methods
%calculate estimated ITDs
toadiff = itdestimator(Obj,modes{kk}, flags.lp, 'butterpoly', kv.butterpoly);
msq(ii-n_heads,kk) = sqrt(sum( (toadiff-toadiff_sim).^2 )/size(toadiff,1));
end
end
end
% -------------------------------------------------------------------------
if flags.do_noisy
modes = {'Threshold','Cen_e2','MaxIACCr', 'MaxIACCe',...
'CenIACCr', 'CenIACCe', 'CenIACC2e', 'PhminXcor','IRGD'};
n_modes = size(modes,2);
% importing a set of head parameter from ziegelwanger2014
tmp=amt_load('ziegelwanger2014','info.mat');
data=tmp.info.Rotation;
data.radius = data.radius*1e-3; % head radius in meter
data.phi = data.phi*pi/180; % polar angel in radian
data.theta = data.theta*pi/180; % azimut angel in radian
head_idx = 15:15+13; % chosing data subset
n_heads = size(head_idx,2);
%define added noise levels of noise in dB of SNR
noise_lvl = [50,40,30,20];
% calculating theoretical and estimated itd's for all head param
% ## initiate array
msq = zeros(n_heads,size(noise_lvl,2),n_modes);
for ii=head_idx % goes thru all head geometries
for jj = 1:size(noise_lvl,2) % level of noise
Obj=amt_load('ziegelwanger2014',['Sphere_Rotation_' data.subjects{ii} '.sofa']);
% calculate theoretically expected ITDs
p0_offaxis = [[data.radius(ii);0; 0; 0; 0;data.phi(ii)+pi/2; data.theta(ii)*pi/180]...
[data.radius(ii);0; 0; 0; 0;data.phi(ii)-pi/2; -data.theta(ii)*pi/180]];
toa_sim_left = ziegelwanger2014_offaxis(p0_offaxis(:,1),Obj.SourcePosition(:,1:2)*pi/180);
toa_sim_right = ziegelwanger2014_offaxis(p0_offaxis(:,2),Obj.SourcePosition(:,1:2)*pi/180);
toadiff_sim = toa_sim_left - toa_sim_right;
% adds noise
for kk=1:Obj.API.M
for mm=1:Obj.API.R
ir_tmp = squeeze(Obj.Data.IR(kk,mm,:));
Obj.Data.IR(kk,mm,:) = ir_tmp + ...
scaletodbspl(noise(length(ir_tmp),1),dbspl(ir_tmp)-noise_lvl(jj),100);
end
end
for kk = 1:n_modes % goes thru all estimation methods
%calculate estimated ITDs
toadiff = itdestimator(Obj,modes{kk},flags.lp,'threshlvl',kv.threshlvl, 'butterpoly', kv.butterpoly);
msq(ii-n_heads,jj,kk) = sqrt(sum( (toadiff-toadiff_sim).^2 )/size(toadiff,1));
end
end
end
end
% -------------------------------------------------------------------------
% creates data based on stimuli
% this is done to compare models found in itdestimator to the dietz model
if flags.do_stim
modes = {'Dietz'};
%modes = {'MaxIACCr', 'MaxIACCe','CenIACCr', 'CenIACCe', 'CenIACC2e','IRGD','Dietz'};
n_modes = size(modes,2);
% importing a set of head parameter from ziegelwanger2014
tmp=amt_load('ziegelwanger2014','info.mat');
data=tmp.info.Rotation;
data.radius = data.radius*1e-3; % head radius in meter
data.phi = data.phi*pi/180; % polar angel in radian
data.theta = data.theta*pi/180; % azimut angel in radian
head_idx = 15:15+13; % chosing data subset
n_heads = size(head_idx,2);
% calculating theoretical and estimated itd's for all head param
% ## initiate array
msq = zeros(n_heads,n_modes);
for ii=head_idx
Obj=amt_load('ziegelwanger2014',[ 'Sphere_Rotation_' data.subjects{ii} '.sofa']);
% creates white noise and adjusts object samlpe length
fs = Obj.Data.SamplingRate;
white_noise = noise(fs/2);
Obj.API.N = size(Obj.Data.IR,3) + size(white_noise,1) - 1;
% adds white noise
stim = zeros(Obj.API.M, Obj.API.R, Obj.API.N);
for kk=1:Obj.API.M %pos
for mm=1:Obj.API.R %ear
stim(kk,mm,:) = lconv(Obj.Data.IR(kk,mm,:),white_noise);
end
end
Obj.Data.IR = stim;
% calculate theoretically expected ITDs
p0_offaxis = [[data.radius(ii);0; 0; 0; 0;data.phi(ii)+pi/2; data.theta(ii)*pi/180]...
[data.radius(ii);0; 0; 0; 0;data.phi(ii)-pi/2; -data.theta(ii)*pi/180]];
toa_sim_left = ziegelwanger2014_offaxis(p0_offaxis(:,1),Obj.SourcePosition(:,1:2)*pi/180);
toa_sim_right = ziegelwanger2014_offaxis(p0_offaxis(:,2),Obj.SourcePosition(:,1:2)*pi/180);
toadiff_sim = toa_sim_left - toa_sim_right;
% calculate estimated ITDs
for kk = 1:n_modes
if strcmp(modes{kk},'Dietz')
fprintf('Dietz \n')
for nn=1:Obj.API.M
insig = transpose(squeeze(stim(nn,:,:)));
dietz_out = dietz2011(insig,fs);
if flags.do_lp
med = median(dietz_out.itd_lp);
else
med = median(dietz_out.itd);
end
% Care: Dietz always uses a FIXED frequency range!
toadiff(nn) = mean(med(1:8)); % <-- { med(1:8) }
toadiff = transpose(toadiff);
end
else
toadiff = itdestimator(Obj,modes{kk},flags.lp, 'butterpoly', kv.butterpoly);
end
msq(ii,kk) = sqrt(sum( (toadiff-toadiff_sim).^2 )/size(toadiff,1));
end
end
end
%% ---------------figure-1------------------------------------------
% Visualisation of Threshold construction examplary for a synthesized
% binaural HRIR of a spherical head with a sound source positioned at an
% azimut angle of 20
if flags.do_fig1
nn = 115;
col = jet(5);
Obj = amt_load('baumgartner2017','hrtf b_nh14.sofa');
fs = Obj.Data.SamplingRate;
fig = figure;
[a1,~] = findpeaks(squeeze(Obj.Data.IR(nn,1,:)),'MinPeakProminence',0.005);
th_value1 = max(a1)*0.2;
[x1,~] = find(squeeze(Obj.Data.IR(nn,1,:))>th_value1,1);
[a2,~] = findpeaks(squeeze(Obj.Data.IR(nn,2,:)),'MinPeakProminence',0.005);
th_value2 = max(a2)*0.2;
[x2,~] = find(squeeze(Obj.Data.IR(nn,2,:))>th_value2,1);
ax1 = subplot(2,1,1);
hold on
plot((0:size(squeeze(Obj.Data.IR(nn,1,:)),1)-1)/fs*1e3,...
squeeze(Obj.Data.IR(nn,1,:)),'k-')
plot(ax1,[x1/fs*1e3; x1/fs*1e3],[-1; 1],'Color',col(5,:))
plot(ax1,[x2/fs*1e3; x2/fs*1e3],[-1; 1],'Color',col(3,:))
plot(ax1,[0; size(Obj.Data.IR(nn,1,:),3)/fs*1e3],[th_value1; th_value1],'Color',col(5,:))
hold off
title(ax1,'Left ear')
xlim(ax1,[0 3])
set(ax1,'Ytick',[-0.03,0,0.03])
xlabel('Time (ms)')
ylim(ax1,[-0.045 0.045])
ylabel('Amplitude (a.u)')
ax2 = subplot(2,1,2);
hold on
plot((0:size(squeeze(Obj.Data.IR(nn,2,:)),1)-1)/fs*1e3,...
squeeze(Obj.Data.IR(nn,2,:)),'k-')
plot(ax2,[x2/fs*1e3; x2/fs*1e3],[-1; 1],'Color',col(5,:))
plot(ax2,[0; size(Obj.Data.IR(nn,2,:),3)/fs*1e3],[th_value2; th_value2],'Color',col(5,:))
hold off
title(ax2,'Right ear')
xlim(ax2,[0 3])
set(ax2,'Ytick',[-0.03,0,0.03])
xlabel('Time (ms)')
ylim(ax2,[-0.045 0.045])
ylabel('Amplitude (a.u.)')
end
%% ---------------figure-2------------------------------------------
% IACC of synthesized binaural HRIR of a spherical head with a sound
% source positioned at an azimut angle of 20
if flags.do_fig2
tmp=amt_load('ziegelwanger2014','info.mat');
data=tmp.info.Rotation;
data.radius = data.radius*1e-3;
data.phi = data.phi*pi/180;
data.theta = data.theta*pi/180;
% n_heads = size(data.subjects,2);
fig = figure();
hold on
for ii=3:3 %n_heads
jj = 115;
Obj=amt_load('ziegelwanger2014',[ 'Sphere_Rotation_' data.subjects{ii} '.sofa']);
plot(transpose(-239:239)/Obj.Data.SamplingRate*1e3,...
envelope(xcorr(squeeze(Obj.Data.IR(jj,1,:)),squeeze(Obj.Data.IR(jj,2,:)))))
plot(transpose(-239:239)/Obj.Data.SamplingRate*1e3,...
xcorr(squeeze(Obj.Data.IR(jj,1,:)),squeeze(Obj.Data.IR(jj,2,:))))
end
%title( 'Examplary inter aural cross correlation' )
xlabel('time delay (ms)')
ylabel('correlation (a.u.)')
legend('envelope of cc','cross correlation','Location','best')
xlim([-1 1])
hold off
end
%% ---------------figure-3------------------------------------------
% Group delay of synthesized binaural HRIR of a spherical head with a
% sound source positioned at an azimut. angle of 20
if flags.do_fig3
tmp=amt_load('ziegelwanger2014','info.mat');
data=tmp.info.Rotation;
% n_heads = size(data.subjects,2);
fig = figure();
hold on
for ii=5:5 %n_heads
jj = 115;
Obj=amt_load('ziegelwanger2014',['Sphere_Rotation_' data.subjects{ii} '.sofa']);
Ns = Obj.API.N;
fs = Obj.Data.SamplingRate;
[gd,w] = grpdelay(squeeze( Obj.Data.IR(jj,1,:) ),1,Ns,fs );
plot(w,gd/fs*1e3)
end
title( 'Exemplary group delay' )
xlabel('Frequency (Hz)')
ylabel('Group delay (ms)')
xlim([500,5000])
ylim([1.35 1.8])
hold off
end
%% ---------------figure-4------------------------------------------
% -------------------------------------------------------------------------
% ITD estimations along horizontal plane for listener for NH15
if flags.do_fig4
Obj = amt_load('baumgartner2017','hrtf b_nh15.sofa');
white_noise = noise(258);
% ---------------------- calculating toa ----------------------------------
modes = {'Threshold','Cen_e2','MaxIACCr', 'MaxIACCe',...
'CenIACCr', 'CenIACCe', 'CenIACC2e', 'PhminXcor','IRGD','Dietz'};
n_modes = size(modes,2);
cc = hsv(n_modes);
plane_idx = find( Obj.SourcePosition(:,2) == 0 );
plane_angle = Obj.SourcePosition(plane_idx,1);
[n_angles,~] = size(plane_angle);
for kk=1:n_modes
if strcmp(modes{kk},'Dietz')
fprintf('Dietz \n')
for nn=1:n_angles
stimulus = SOFAspat(white_noise,Obj,plane_angle(nn),0);
dietz_out = dietz2011(stimulus,Obj.Data.SamplingRate);
med = median(dietz_out.itd);
toa_diff{kk}(nn) = mean(med(1:8));
end
else
toa_diff{kk} = itdestimator(Obj,modes{kk}, 'butterpoly', kv.butterpoly);
end
end
fig = figure();
hold on
for kk=1:n_modes
if strcmp(modes{kk},'Dietz') || strcmp(modes{kk},'Dietz lp')
plot(plane_angle,toa_diff{kk},'color', cc(kk,:))
else
plot(plane_angle,toa_diff{kk}(plane_idx),'color', cc(kk,:))
end
end
xlabel('azimuthal angle (Deg)')
ylabel('interaural time difference (s)')
xlim([0,360])
legend('Threshold','Cen_e2','MaxIACCr', 'MaxIACCe',...
'CenIACCr', 'CenIACCe', 'CenIACC2e', 'PhminXcor',...
'IRGD','Dietz','Location','eastoutside')
hold off
end
%% ---------------figure-5------------------------------------------
% -------------------------------------------------------------------------
% Ear positions of all heads. phi represents the azimuth angle while theta
% shows elevations.
if flags.do_fig5
%load data
data=data_ziegelwanger2014('SPHERE_ROT',flags.cachemode);
for ii=1:length(data.results)
p_onaxis{1}(:,:,ii)=data.results(ii).MAX{1}.p_onaxis;
p_onaxis{2}(:,:,ii)=data.results(ii).CTD{1}.p_onaxis;
p_onaxis{3}(:,:,ii)=data.results(ii).AGD{1}.p_onaxis;
p_onaxis{4}(:,:,ii)=data.results(ii).MCM{1}.p_onaxis;
end
%plot figure
fig = figure();
lw2=2; %linewidth
ls='kx';%linestyle
lc=[0 0 0];
%phi
subplot(211);
var=[squeeze(p_onaxis{4}(2,1,:))/pi*180 ...
squeeze(p_onaxis{4}(2,2,:))/pi*180 ...
data.phi+ones(length(data.phi),1)*90 ...
data.phi-ones(length(data.phi),1)*90];
hold on
for ch=1:size(p_onaxis{4},2)
plot(15:23,var(15:23,2+ch),ls,'Linewidth',lw2,'color',lc)
plot(24:28,var(24:28,2+ch),ls,'Linewidth',lw2,'color',lc)
end
clear var;
set(gca,'YTick',[-90 90])
set(gca,'xtick',1:42)
xlim([15-1,15+14])
set(gca,'Xticklabel',{''})
ylabel('\phi (deg)')
grid on
set(gca,'GridLineStyle','--')
%theta
subplot(212);
var=[squeeze(p_onaxis{4}(3,1,:))/pi*180 ...
squeeze(p_onaxis{4}(3,2,:))/pi*180 ...
data.theta ...
-data.theta];
hold on
for ch=1:size(p_onaxis{4},2)
plot(15:23,var(15:23,2+ch),ls,'Linewidth',lw2,'color',lc)
plot(24:28,var(24:28,2+ch),ls,'Linewidth',lw2,'color',lc)
end
clear var;
ylabel('\theta (deg)')
xlabel('Condition')
ylim([-15,15])
xlim([15-1,15+14])
set(gca,'xtick',1:42)
set(gca,'xticklabel',[])
set(gca,'ytick',[-10 0 10])
grid on
set(gca,'GridLineStyle','--')
%set(gcf,'color',[1 1 1])
end
%% ---------------figure-6------------------------------------------
% -------------------------------------------------------------------------
% Synthesized binaural HRIR of a spherical head with a sound source
% positioned at an azimuth. angle of 20 with additive noise
if flags.do_fig6
tmp=amt_load('ziegelwanger2014','info.mat');
data=tmp.info.Rotation;
data.radius = data.radius*1e-3;
data.phi = data.phi*pi/180;
data.theta = data.theta*pi/180;
noise_lvl = [20,30,40];
n_noise = size(noise_lvl,2);
fig = figure();
hold on
for jj = 1:n_noise % level of noise
Obj=amt_load('ziegelwanger2014',[ 'Sphere_Rotation_' data.subjects{4} '.sofa']);
IR = squeeze(Obj.Data.IR(777,1,:));
IR = IR + scaletodbspl(noise(length(IR),1),dbspl(IR)-noise_lvl(jj), 100);%%awgn(IR,noise_lvl(jj));
plot(IR)
end
%title( 'Impulse response with added gaussian noise' )
xlabel('Sample point')
xlim([0 240])
ylabel('Amplitude (a.u.)')
legend('SNR 20dB','SNR 30dB','SNR 40dB','Location','best')
hold off
end
%% ---------------figure-7------------------------------------------
% ANR for all examined heads exemplary for the threshold estimation method.
if flags.do_fig7
msq = amt_cache('get','clean_bb_msq',flags.cachemode);
if isempty(msq)
msq = exp_steidle2019('clean', 'bb');
amt_cache('set','clean_bb_msq',msq);
end
msq_bb_clean = msq;
fig = figure();
bar(msq_bb_clean(:,1,1)*1e6)
xlabel('Heads as described in section 3.1')
ylabel('ANR in \mus')
colormap('lines')
set(gca, 'YMinorGrid','on', 'YMinorGrid','on')
end
%% ---------------figure-8------------------------------------------
% ANR for all examined estimation methods and SNRs, broadband &
% low-pass (shown in black)
if flags.do_fig8
% msq_bb_clean
msq_bb_clean = amt_cache('get','clean_bb_msq',flags.cachemode);
if isempty(msq_bb_clean)
msq_bb_clean = exp_steidle2019('clean', 'bb');
amt_cache('set','clean_bb_msq',msq_bb_clean);
end
% msq_lp_clean
msq_lp_clean = amt_cache('get','clean_lp_msq',flags.cachemode);
if isempty(msq_lp_clean)
msq_lp_clean = exp_steidle2019('clean', 'lp');
amt_cache('set','clean_lp_msq',msq_lp_clean);
end
% msq_bb_noisy
msq_bb_noisy = amt_cache('get','noisy_bb_msq',flags.cachemode);
if isempty(msq_bb_noisy)
msq_bb_noisy = exp_steidle2019('noisy', 'bb');
amt_cache('set','noisy_bb_msq',msq_bb_noisy);
end
% msq_lp_noisy
msq_lp_noisy = amt_cache('get','noisy_lp_msq',flags.cachemode);
if isempty(msq_lp_noisy)
msq_lp_noisy = exp_steidle2019('noisy', 'lp');
amt_cache('set','noisy_lp_msq',msq_lp_noisy);
end
msq_bb_clean = reshape(msq_bb_clean,14,1,9);
msq_bb = cat(2,msq_bb_clean,msq_bb_noisy);
msq_bb = msq_bb(1:end-5,:,:);
% msq_bb_std = squeeze( std(msq_bb) );
msq_bb_sum = squeeze(sum(msq_bb,1)/size(msq_bb,1));
msq_lp_clean = reshape(msq_lp_clean,14,1,9);
msq_lp = cat(2,msq_lp_clean,msq_lp_noisy);
msq_lp = msq_lp(1:end-5,:,:);
% msq_lp_std = squeeze( std(msq_lp ));
msq_lp_sum = squeeze(sum(msq_lp,1)/size(msq_lp,1));
msq_int_sum = reshape(cat(2,cat(1,cat(1,msq_bb_sum,msq_lp_sum),zeros(5,9)),zeros(15,1)),5,30);
% msq_int_std = reshape(cat(2,cat(1,cat(1,msq_bb_std,msq_lp_std),zeros(5,9)),zeros(15,1)),5,30);
M = size(msq_int_sum,1);
N = size(msq_int_sum,2);
K = numel(msq_int_sum);
g = 0; k=0;
bb_idx = 1:3:N-4;
lp_idx = 2:3:N-4;
% zo_idx = [3:3:N-4,28,29,30];
% len = size(bb_idx,2);
fig = figure();
hold on
col = parula(10);
for ii=1:M
for jj = 1:N
if any(bb_idx == jj)
handle(mod(g,9)+1) = barh(K,msq_int_sum(ii,jj)*1e6,1,'FaceColor',col(mod(g,9)+1,:));
% errorbar(K,msq_int_sum(ii,jj),msq_int_std(ii,jj),...
% 'MarkerEdgeColor','k','MarkerFaceColor','w')
g = g+1;
elseif any(lp_idx == jj)
barh(K,msq_int_sum(ii,jj)*1e6,1,'FaceColor',[1,1,1]*0.2)%col(mod(k,9)+1,:),'EdgeColor','r')
% errorbar(K,msq_int_sum(ii,jj),msq_int_std(ii,jj),...
% 'MarkerEdgeColor','k','MarkerFaceColor',[.49 1 .63])
k = k+1;
end
K = K-1;
end
end
xlim([5e0,2e3])
xlabel('ANR in \mus')
ylabel('SNR in dB')
set(gca, 'XScale', 'log')
set(gca, 'yTickLabel',{'20 dB','30 dB','40 dB','50 dB','clean'},'YTick',[18,48,78,108,138])
set(gca, 'XMinorGrid','on', 'XMinorGrid','on')
legend(handle, 'Threshold','Cen_e2','MaxIACCr', 'MaxIACCe',...
'CenIACCr', 'CenIACCe', 'CenIACC2e', 'PhminXcor','IRGD','Location','northeast')
end
%% ---------------figure-9------------------------------------------
% ANR for chosen estimation methods (broadband & low-pass) based
% on binaural signals
if flags.do_fig9
% stim_bb
msq_bb_stim = amt_cache('get','stim_bb_msq',flags.cachemode);
if isempty(msq_bb_stim)
msq_bb_stim = exp_steidle2019('stim', 'bb');
amt_cache('set','stim_bb_msq',msq_bb_stim);
end
% stim_lp
msq_lp_stim = amt_cache('get','stim_lp_msq',flags.cachemode);
if isempty(msq_lp_stim)
msq_lp_stim = exp_steidle2019('stim', 'lp');
amt_cache('set','stim_lp_msq',msq_lp_stim);
end
msq_stim = cat(2,msq_bb_stim,msq_lp_stim);
msq_stim_sum = squeeze(sum(msq_stim,1)/size(msq_stim,1));
% msq_stim_std = std(msq_stim);
fig = figure();
hold on
modes = {'MaxIACCr', 'MaxIACCe','CenIACCr', 'CenIACCe', 'CenIACC2e',...
'IRGD','Dietz',...
'MaxIACCr lp', 'MaxIACCe lp','CenIACCr lp', 'CenIACCe lp',...
'CenIACC2e lp','IRGD lp','Dietz lp'};
barh(1:size(msq_stim_sum,2),msq_stim_sum*1e6)
% errorbar(msq_stim_sum*1e6,1:size(msq_stim_sum,2),msq_stim_std*1e6,'horizontal','k.')
% 'MarkerEdgeColor','k','MarkerFaceColor',[.49 1 .63])
xlim([0,500])
xlabel('ANR in \mus')
set(gca, 'YTickLabel',modes, 'YTick',1:size(msq_stim_sum,2))
colormap('lines')
set(gca, 'XMinorGrid','on', 'XGrid','on')
hold off
end
end