function inoutsig = adaptloop(inoutsig,fs,varargin)
%ADAPTLOOP Adaptation loops
% Usage: outsig = adaptloop(insig,fs,limit,minspl,tau);
% outsig = adaptloop(insig,fs,limit,minlvl,tau);
% outsig = adaptloop(insig,fs,limit,minspl);
% outsig = adaptloop(insig,fs,limit,minlvl);
% outsig = adaptloop(insig,fs,limit);
% outsig = adaptloop(insig,fs);
%
% ADAPTLOOP(insig,fs,limit,minspl,tau) applies non-linear adaptation to an
% input signal insig sampled at a sampling frequency of fs Hz.
% limit (in arbitrary units) is used to limit the overshoot of the output.
% minspl determines the lowest audible SPL of the signal (in dB).
% minlvl is minspl but expressed as a linear amplitude to be directly passed
% to the core of adaptloop. In order to be recognized as a valid minlvl,
% it needs to be 0 < minlvl < 1.
% tau is a vector with time constants involved in the adaptation loops.
% The number of adaptation loops is determined by the length of tau.
%
% ADAPTLOOP(insig,fs,limit,minspl) does as above, but uses the values for
% tau determined in Dau. et al (1996a).
%
% ADAPTLOOP(insig,fs,limit) does as above with an minspl of 0 dB.
%
% ADAPTLOOP(insig,fs) does as above with an overshoot limit of limit=10.
%
% ADAPTLOOP takes the following flags at the end of the line of input
% arguments:
%
% 'adt_dau1997' Default. This consists of 5 adaptation loops with
% an overshoot limit of 10 and a minimum SPL of
% 0 dB. The adaptation loops have an
% exponential delay.
%
% 'adt_dau1996' This is as in adt_dau1997 but without any
% overshoot limiting.
%
% 'adt_puschel1988' This consists of 5 adaptation loops without
% overshoot limiting. The adapation loops have a linear spacing.
%
% 'adt_breebaart2001' As 'adt_puschel1998'
%
% 'adt_relanoiborra2019' As 'adt_dau1997' but with minspl of -34 dB.
%
% 'dim',d Do the computation along dimension d of the input.
%
% See also: auditoryfilterbank, lopezpoveda2001
%
% Demos: demo_adaptloop
%
% References:
% H. Relaño-Iborra, J. Zaar, and T. Dau. A speech-based computational
% auditory signal processing and perception model. The Journal of the
% Acoustical Society of America, 146(5), 2019.
%
% J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing
% model based on contralateral inhibition. I. Model structure. The
% Journal of the Acoustical Society of America, 110:1074--1088, August
% 2001.
%
% T. Dau, D. Pueschel, and A. Kohlrausch. A quantitative model of the
% effective signal processing in the auditory system. I. Model structure.
% The Journal of the Acoustical Society of America, 99(6):3615--3622,
% 1996a.
%
% T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing
% of amplitude modulation. I. Detection and masking with narrow-band
% carriers. The Journal of the Acoustical Society of America,
% 102:2892--2905, 1997a.
%
% T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing
% of amplitude modulation. II. Spectral and temporal integration. The
% Journal of the Acoustical Society of America, 102:2906--2919, 1997b.
%
% D. Pueschel. Prinzipien der zeitlichen Analyse beim Hoeren. PhD thesis,
% Universitaet Goettingen, 1988.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/common/adaptloop.php
% #Author: Stephan Ewert (1999-2004) and Morten L. Jepsen: Original version
% #Author: Peter L. Søndergaard (2009-2013): adapted to AMT
% #Author: Piotr Majdak (2013-2021): adapted to AMT 1.0
% #Author: Alejandro Osses (2021): bug fixes for AMT 1.0.x
% #Author: Piotr Majdak (2021): adaptation for AMT 1.1
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% ------ Checking of input parameters and default parameters ---------
if nargin<2
error('Too few input parameters.');
end;
definput.import = {'adaptloop'};
definput.keyvals.dim=[];
[~,keyvals,limit,minspl,tau] = ltfatarghelper({'limit','minspl','tau'},definput,varargin);
if isfield(keyvals,'minlvl'),
warning('minlvl depracated, use minspl instead');
if ~isempty(keyvals.minlvl), minspl=keyvals.minlvl; end % for backwards compatibility in case somebody provides 'minlvl' instead 'minspl'.
end
if ~isnumeric(minspl)
error('%s: minlvl must be a scalar either as linear amplitude (0<minlvl<1) or in dB re 10 �Pa (otherwise).',upper(mfilename));
end;
%
if all(minspl>0 & minspl<1)
% minspl is provided as minlvl (i.e., a linear amplitude), use it as it is.
minlvl_lin=minspl;
else
% minspl is provided as SPL in dB re 10 �Pa (the reference level of adaptloop)
% convert it to linear amplitude minlvl_lin
minlvl_lin=scaletodbspl(minspl,[],100);
end
% amt_disp(['minspl is ' num2str(minspl) ' thus minlvl_lin is ' num2str(minlvl_lin)],'debug');
if ~isnumeric(tau) || ~isvector(tau) || any(tau<=0)
error('%s: tau must be a vector with positive values.',upper(mfilename));
end;
if ~isnumeric(limit) || ~isscalar(limit)
error('%s: "limit" must be a scalar.',upper(mfilename));
end;
% Note that the implementation of the adaptation loops assumes
% that any SPL is re 10 �Pa, i.e., dboffset=100.
% This needs to be considered when SPLs (in dB) are provided/interpret
% with this implementation of the adaptation lookps.
[inoutsig,~,~,~,dim,permutedsize,order]=assert_sigreshape_pre(inoutsig,[],keyvals.dim,upper(mfilename));
inoutsig=comp_adaptloop(inoutsig,fs,limit,minlvl_lin,tau);
inoutsig=assert_sigreshape_post(inoutsig,dim,permutedsize,order);