%DEMO_BRUCE2018_AUDITORYNERVEMODEL simulate processing across the auditory nerve
%
% DEMO_BRUCE2018_AUDITORYNERVEMODEL illustrates various processing
% stages along the auditory nerve predicted as predicted with the
% empirical synapse model of Bruce et al. (2018).
%
% Figure 1: Inner hair cell potential and mean firing rate
%
% Figure 2: Synaptic spike rate
%
% Figure 3: Refractory and release time
%
%
% See also: bruce2018 exp_bruce2018
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/demos/demo_bruce2018_auditorynervemodel.php
% #Author : Ian Bruce
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% model parameters
CF = 1e3; % CF in Hz;
spont = 100; % spontaneous firing rate
tabs = 0.6e-3; % Absolute refractory period
trel = 0.6e-3; % Baseline mean relative refractory period
cohc = 1.0; % normal ohc function
cihc = 1.0; % normal ihc function
species = 1; % 1 for cat (2 for human with Shera et al. tuning; 3 for human with Glasberg & Moore tuning)
noiseType = 1; % 1 for variable fGn; 0 for fixed (frozen) fGn
implnt = 0; % "0" for approximate or "1" for actual implementation of the power-law functions in the Synapse
% stimulus parameters
stimdb = 60; % stimulus intensity in dB SPL
F0 = CF; % stimulus frequency in Hz
Fs = 100e3; % sampling rate in Hz (must be 100, 200 or 500 kHz)
T = 50e-3; % stimulus duration in seconds
rt = 2.5e-3; % rise/fall time in seconds
ondelay = 10e-3;
% PSTH parameters
nrep = 100; % number of stimulus repetitions (e.g., 50);
psthbinwidth = 1e-4; % binwidth in seconds;
psthbins = round(psthbinwidth*Fs); % number of psth bins per psth bin
t = 0:1/Fs:T-1/Fs; % time vector
mxpts = length(t);
irpts = rt*Fs;
onbin = round(ondelay*Fs);
pin = zeros(1,onbin+mxpts);
pin(onbin+1:onbin+mxpts) = sqrt(2)*20e-6*10^(stimdb/20)*sin(2*pi*F0*t); % unramped stimulus
pin(onbin+1:onbin+irpts)= pin(onbin+1:onbin+irpts).*(0:(irpts-1))/irpts;
pin(onbin+(mxpts-irpts):onbin+mxpts)=pin(onbin+(mxpts-irpts):onbin+mxpts).*(irpts:-1:0)/irpts;
dt=1/Fs; % time step
vihc = bruce2018_innerhaircells(pin,CF,nrep,dt,4*T,cohc,cihc,species);
[psth,meanrate, varrate, synout, trd_vector,trel_vector] = bruce2018_synapse(vihc,CF,nrep,dt,noiseType,implnt,spont,tabs,trel);
Psth = sum(reshape(psth,psthbins,length(psth)/psthbins)); %
simtime = length(psth)/Fs;
tvect = 0:psthbinwidth:simtime-psthbinwidth;
tt= 0:1/Fs:(length(psth)-1)/Fs;
px = zeros(size(psth));
px(1:length(pin)) = pin;
Sout = mean(reshape(synout,length(synout)/nrep,nrep),2); %
T_rd = mean(reshape(trd_vector,length(trd_vector)/nrep,nrep),2); %
T_rel = mean(reshape(trel_vector,length(trel_vector)/nrep,nrep),2); %
figure
subplot(3,1,1)
plot(tt*1e3,px)
ylabel('Pressure (Pa)')
xlabel('Time (ms)')
xlim(ceil(tt([1 end])*1e3))
title('Acoustic Stimulus')
subplot(3,1,2)
plot(tt*1e3,vihc(1:length(tt))*1e3)
ylabel('V_{ihc} (mV)')
xlabel('Time (ms)')
title('IHC relative membrane potential')
xlim(ceil(tt([1 end])*1e3))
subplot(3,1,3)
bar(tvect*1e3, Psth/nrep/psthbinwidth,'histc') % Plot of estimated mean spike rate
ylabel('Firing Rate (/s)')
xlabel('Time (ms)')
xlim(ceil(tt([1 end])*1e3))
title('PSTH')
figure
subplot(3,1,1)
plot(tt*1e3,Sout)
ylabel('S_{out} (/s)')
xlabel('Time (ms)')
xlim(ceil(tt([1 end])*1e3))
title('Mean Synaptic Release Rate')
subplot(3,1,2)
plot(tt*1e3,meanrate)
ylabel('Mean Rate (/s)')
xlabel('Time (ms)')
title('Mean of Spike Rate')
xlim(ceil(tt([1 end])*1e3))
subplot(3,1,3)
plot(tt*1e3,varrate)
ylabel('Var Rate (/s)')
xlabel('Time (ms)')
xlim(ceil(tt([1 end])*1e3))
title('Variance in Spike Rate')
figure
subplot(3,1,1)
plot(tt*1e3,Sout)
ylabel('S_{out} (/s)')
xlabel('Time (ms)')
xlim(ceil(tt([1 end])*1e3))
title('Mean Synaptic Release Rate')
subplot(3,1,2)
plot(tt*1e3,T_rd*1e3)
ylabel('\tau_{rd} (ms)')
xlabel('Time (ms)')
title('Mean Synaptic Redocking Time')
xlim(ceil(tt([1 end])*1e3))
subplot(3,1,3)
plot(tt*1e3,T_rel*1e3)
ylabel('t_{rel} (ms)')
xlabel('Time (ms)')
xlim(ceil(tt([1 end])*1e3))
title('Mean Relative Refractory Period')