function [y_est] = llado2022(ir,stim,fs,NN_pretrained)
%LLADO2022 Neural network localization
% Usage: [y_est] = llado2022(ir);
% [y_est] = llado2022(ir, stim);
% [y_est] = llado2022(ir, stim, fs);
% [y_est] = llado2022(ir, stim, fs, NN_pretrained);
%
% Input parameters:
% ir : Impulse responses. Size: (*direction x time x ear*).
%
% Output parameters:
% y_est : Perceived direction and position uncertainty.
%
% LLADO2022(...) is a model for estimating the effect of head-worn
% devices on frontal horizontal localisation. A neural network (NN) was
% trained using binaural features of a dummy head wearing different
% head-worn devices to predict the data from a perceptual test using the
% same devices. If you want to use your own data, please find in the
% script 'demo_llado2022' the whole procedure.
%
% Optional input parameters:
%
% 'stim' stimulus. If empty, 250 ms of pink noise
%
% 'fs' Sampling rate (in Hz). Default: 48000 Hz.
%
% 'NN_pretrained' if empty, a pretrained NN is used.
%
%
% To see details or to train a new NN, please see the script demo_LLADO2022
%
% See also: exp_llado2022 demo_llado2022 plot_llado2022 llado2022_trainnn
%
% References:
% Lladó, Pedro, Hyvärinen, Petteri, and Pulkki, Ville. Auditory
% model-based estimation of the effect of head-worn devices on frontal
% horizontal localisation. Acta Acust., 6:1, 2022.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/models/llado2022.php
% #StatusDoc: Good
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB
% #Author: Pedro Llado (2022)
% #Author: Petteri Hyvärinen (2022)
% #Author: Ville Pulkki (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% DEFAULT OPTIONAL INPUTS
if nargin<4; load('NN_pretrained.mat'); end % Find an example on how to train the network in 'demo_llado2022'
if nargin<3; fs=48000; end
if nargin<2; stim = pinknoise(0.25*fs); end
%% EXTRACT BINAURAL FEATURES
binauralFeatures = llado2022_binauralFeats(ir,stim,fs);
%% EVALUATE PRETRAINED NETWORK
y_est = llado2022_evaluateNN(binauralFeatures,NN_pretrained);
end