function [doa, params] = mclachlan2021(template,target,varargin)
%MCLACHLAN2021 A dynamic ideal-observer model of human sound localization
% Usage: [results,template,target] = mclachlan2014(template,target,'num_exp',20,'sig_S',4.2);
%
% Input parameters:
%
% template : struct with the fields
%
% - fs : sampling rate (Hz)
%
% - fc : ERB frequency channels (Hz)
%
% - itd0 : itd computed for each hrir (samples)
%
% - H : Matrix containing absolute values of HRTFS for all grid points
%
% - coords : Matrix containing cartesian coordinates of all grid points, normed to radius 1m
%
% - T : angular template for each coordinate
%
% target : struct with the fields
%
% - fs : sampling rate
%
% - fc : ERB frequency channels
%
% - itd0 : itd corresponding to source position
%
% - S : sound source spectrum
%
% - H : Matrix containing absolute values of HRTFS for all source directions
%
% - coords : Matrix containing cartesian coordinates of all source positions to be estimated, normed to radius 1m
%
% - T : angular template for each coordinate
%
% Output parameters:
%
% doa : directions of arrival in spherical coordinates
%
% - est : estimated [num_sources, num_repetitions, 3]
%
% - real : actual [num_sources, 3]
%
% params : additional model's data computed for estimations
%
% - est_idx : Indices corresponding to template direction where the maximum probability density for each source position is found
% - est_loglik : Log-likelihood of each estimated direction
%
% - post_prob : Maximum posterior probability density for each target source
%
% - freq_channels : number of auditory channels
%
% - T_template : Struct with template data elaborated by the model
%
% - T_target : Struct with target data elaborated by the model
%
%
% MCLACHLAN2021(...) is a dynamic ideal-observer model of human sound
% localization, by which we mean a model that performs optimal
% information processing within a Bayesian context. The model considers
% all available spatial information contained within the acoustic
% signals encoded by each ear over a specified hear rotation. Parameters
% for the optimal Bayesian model are determined based on psychoacoustic
% discrimination experiments on interaural time difference and sound
% intensity.
%
%
% MCLACHLAN2021 accepts the following optional parameters:
%
% 'num_exp',num_exp Set the number of localization trials. Default is num_exp = 500.
%
% 'SNR',SNR Set the signal to noise ratio corresponding to
% different sound source intensities.
% Default value is SNR = 75 [dB]
%
% 'dt',dt Time between each acoustic measurement in seconds.
% Default value is dt = 0.005.
%
% 'sig_itd0',sig Set standard deviation for the noise on the initial
% itd. Default value is sig_itd0 = 0.569.
%
% 'sig_itdi',sig Set standard deviation for the noise on the itd
% change per time step. Default value is sig_itdi = 1.
%
% 'sig_I',sig Set standard deviation for the internal noise.
% Default value is sig_I = 3.5.
%
% 'sig_S',sig Set standard deviation for the variation on the
% source spectrum. Default value is sig_S = 3.5.
%
% 'rot_type',type Set rotation type. Options are 'yaw', 'pitch' and
% 'roll'. Default value is 'yaw'.
%
% 'rot_size',size Set rotation amount in degrees. Default value is
% rot_size = 0.
%
% 'stim_dur',dur Set stimulus duration in seconds. Default value is
% stim_dur = 0.1.
%
% Further, cache flags (see amt_cache) can be specified.
%
%
%
% Requirements:
% -------------
%
% 1) SOFA API v1.1 or higher from
% http://sourceforge.net/projects/sofacoustics for Matlab (e.g. in
% thirdparty/SOFA)
%
% See also: exp_reijniers2014 plot_reijniers2014
% reijniers2014_metrics
%
% References:
% R. Barumerli, P. Majdak, R. Baumgartner, J. Reijniers, M. Geronazzo,
% and F. Avanzini. Predicting directional sound-localization of human
% listeners in both horizontal and vertical dimensions. In Audio
% Engineering Society Convention 148. Audio Engineering Society, 2020.
%
% J. Reijniers, D. Vanderleist, C. Jin, C. S., and H. Peremans. An
% ideal-observer model of human sound localization. Biological
% Cybernetics, 108:169--181, 2014.
%
% G. McLachlan, P. Majdak, J. Reijniers, and H. Peremans. Towards
% modelling active dynamic sound localisation based on Bayesian
% inference. Acta Acustica, 2021.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/models/mclachlan2021.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Unknown
% #Requirements: M-Signal M-Image
% #Author: Glen McLachlan (2021)
% #Author: Michael Mihocic (2024): header documentation fixed
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% Check input options
definput.import={'amt_cache'};
definput.import={'mclachlan2021'}; % looks for arg_mclachlan2021
% definput.importdefaults={'afb_osses2021','ihc_breebaart2001', 'adt_osses2021','mfb_jepsen2008'};
[flags,kv] = ltfatarghelper({}, definput, varargin);
% prevent infinite matrix if rot_size==0
if kv.rot_size == 0
kv.rot_size = 0.1;
end
%% derived parameters
rot_speed = kv.rot_size/kv.stim_dur; % rotation speed
steps = floor(kv.stim_dur/kv.dt); % amount of measurements steps during stimulus
alpha = linspace(0,kv.rot_size,steps); % vector with angles at each measurement step
%% define templates
% T_template has size [Q x (2xfc+1)], where Q is number of sampled points
% and fc = number of frequency channels
T_template=[template.itd; template.ditd;...
squeeze(template.H(:,:,1)-template.H(:,:,2)); ...
0.5.*squeeze(template.H(:,:,1)+template.H(:,:,2))]';
T_target=[target.itd; target.ditd; ...
squeeze(target.H(:,:,1)-target.H(:,:,2)); ...
0.5.*squeeze(target.H(:,:,1)+target.H(:,:,2))]';
%% define error covariance matrix
sig_itd0 = kv.sig_itd0; %0.569;
sig_itdi = kv.sig_itdi; %still unknown, currently set to 1
sig_I = kv.sig_I; % 3.5; Intensity discrimination for broadband signal
sig_S = kv.sig_S; %3.5; Source's template error
sig = kv.sig; % Expected variance on the source strength - interchannel noise communication
sig_i = [sig_itd0, repmat(sig_itdi,1,steps-1)]; % var on ITD at each time step
% create M_beta covariance matrix
W = diag(1./(sig_i.^2)); % weight matrix
X = ones(steps,2); % each column a slope of a parameter beta
X(:,2) = alpha;
M_beta = inv(X.'*W*X); % covariance matrix of ITD0 and ITDd
Sig = blkdiag(M_beta, 2*sig_I^2*eye(length(template.fc)), ...
(sig_I^2/2 + sig_S^2)*eye(length(template.fc)) + sig^2); % full covariance matrix
%% simulate num_exp experimental trials
num_exp = kv.num_exp;
invSig = inv(Sig);
num_targ = size(target.coords,1);
num_temp = size(template.coords,1);
log_lik = zeros(num_targ, num_exp);
doa_idx = zeros(num_targ, num_exp);
post_prob = zeros(num_targ, num_exp, num_temp);
doa_estimations = zeros(num_targ, num_exp, 3);
entropy = zeros(num_targ,1); % entropy in bits
Entropy = zeros(num_targ,1);
if nargout > 1
X_all = zeros(num_targ, num_exp, size(T_target, 2));
end
for e = 1:num_exp
amt_disp(sprintf('experiment %i', e))
X = mvnrnd(T_target,Sig);
if nargout > 1
X_all(:,e,:) = X;
end
for s = 1:num_targ
for d = 1:num_temp
% Formula R
u_diff = (X(s,:)-T_template(d,:));
post_prob(s,e,d) = abs(exp(-0.5* u_diff*invSig*transpose(u_diff)));
end
% normalize
post_prob(s,e,:) = post_prob(s,e,:)/sum(post_prob(s,e,:) + eps);
% maximum a posteriori
[log_lik(s,e), doa_idx(s,e)] = max(post_prob(s,e,:));
entropy(s)= - squeeze(post_prob(s,e,:))'*log2(squeeze(post_prob(s,e,:)) + eps);
doa_estimations(s,e,:) = template.coords(doa_idx(s,e), :);
end
Entropy = Entropy + entropy; %cumulative entropy over experiments
end
Entropy = Entropy/num_exp;
Information = log2(num_temp) - Entropy;
%% results
if (size(doa_estimations,1)==1)
doa.est = squeeze(doa_estimations)';
else
doa.est = doa_estimations;
end
doa.real = target.coords;
% user required more than the estimations
if nargout > 1
params.template_coords = template.coords;
params.post_prob = post_prob;
params.entropy = Entropy;
params.information = Information;
params.est_idx = doa_idx;
params.est_loglik = log_lik;
params.X = X_all;
params.T_template = T_template;
params.T_target = T_target;
params.freq_channels = template.fc;
params.Tidx.itd = 1;
assert(length(target.fc)==length(template.fc))
params.Tidx.Hp = params.Tidx.itd + (1:length(target.fc));
params.Tidx.Hm = params.Tidx.Hp(end) + (1:length(target.fc));
else
clear X_all post_prob doa_idx log_lik
end
end
function Y_N = SH(N, dirs)
% calculate spherical harmonics up to order N for directions dirs [azi ele;...] (in radiant)
%
N_dirs = size(dirs, 1);
N_SH = (N+1)^2;
dirs(:,2) = pi/2 - dirs(:,2); % convert to inclinations
Y_N = zeros(N_SH, N_dirs);
% n = 0
Lnm = legendre(0, cos(dirs(:,2)'));
Nnm = sqrt(1./(4*pi)) * ones(1,N_dirs);
CosSin = zeros(1,N_dirs);
CosSin(1,:) = ones(1,size(dirs,1));
Y_N(1, :) = Nnm .* Lnm .* CosSin;
% n > 0
idx = 1;
for n=1:N
m = (0:n)';
Lnm = legendre(n, cos(dirs(:,2)'));
condon = (-1).^[m(end:-1:2);m] * ones(1,N_dirs);
Lnm = condon .* [Lnm(end:-1:2, :); Lnm];
mag = sqrt( (2*n+1)*factorial(n-m) ./ (4*pi*factorial(n+m)) );
Nnm = mag * ones(1,N_dirs);
Nnm = [Nnm(end:-1:2, :); Nnm];
CosSin = zeros(2*n+1,N_dirs);
% m=0
CosSin(n+1,:) = ones(1,size(dirs,1));
% m>0
CosSin(m(2:end)+n+1,:) = sqrt(2)*cos(m(2:end)*dirs(:,1)');
% m<0
CosSin(-m(end:-1:2)+n+1,:) = sqrt(2)*sin(m(end:-1:2)*dirs(:,1)');
Ynm = Nnm .* Lnm .* CosSin;
Y_N(idx+1:idx+(2*n+1), :) = Ynm;
idx = idx + 2*n+1;
end
Y_N = Y_N.';
end