function [gamma,epsilon,s] = baumgartner2014_parametrization(s)
% BAUMGARTNER2014_PARAMETRIZATION Joint optimization of model parameters
% Usage: [gamma,epsilon] = baumgartner2014_parametrization(s)
%
% Input parameters:
% s : strucure containing subject's data. It must include the
% following fields:
% Obj ... the listener's HRTF as SOFA object.
% itemlist ... the listener's response patterns. (See help
% localizationerror)
%
% Output parameters:
% gamma : degree of selectivity in 1/dB
%
% epsilon : response scatter in degrees induced by sensorimotor mapping
%
% BAUMGARTNER2014_PARAMETRIZATION(...) jointly optimizes the degree of
% selectivity Gamma, the response scatter epsilon induced by
% sensorimotor mapping, and the listener-specific sensitivity S_l.
%
% Examples:
% ---------
%
% This example shows how to parametrize the model according to the data
% from baumgartner2014 :
%
% s = data_baumgartner2014('baseline'); % Load the experimental data
% [gamma,epsilon] = baumgartner2014_parametrization(s);
%
% See also: baumgartner2014, data_baumgartner2014
%
% References:
% R. Baumgartner, P. Majdak, and B. Laback. Modeling sound-source
% localization in sagittal planes for human listeners. The Journal of the
% Acoustical Society of America, 136(2):791--802, 2014.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/modelstages/baumgartner2014_parametrization.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: SOFA CircStat M-SIGNAL M-Stats O-Statistics
% #Author: Robert Baumgartner (2014), Acoustics Research Institute, Vienna, Austria
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% Evaluate performance as a function of the lateral angle
latseg = -60:20:60; % centers of lateral segments
dlat = 10; % lateral range (+-) of each segment
for ll = 1:length(s)
s(ll).target = [];
s(ll).response = [];
s(ll).Nt = [];
s(ll).pe_exp_lat = zeros(1,length(latseg));
s(ll).qe_exp_lat = zeros(1,length(latseg));
for ii = 1:length(latseg)
latresp = s(ll).itemlist(:,7);
idlat = latresp <= latseg(ii)+dlat & latresp > latseg(ii)-dlat;
s(ll).mm2 = s(ll).itemlist(idlat,:);
s(ll).mm2(:,7) = 0; % set lateral angle to 0deg such that localizationerror works also outside +-30deg
s(ll).pe_exp_lat(ii) = real(localizationerror(s(ll).mm2,'rmsPmedianlocal'));
s(ll).qe_exp_lat(ii) = real(localizationerror(s(ll).mm2,'querrMiddlebrooks'));
s(ll).target{ii} = real(s(ll).mm2(:,6)); % polar angle of target
s(ll).response{ii} = real(s(ll).mm2(:,8)); % polar angle of response
s(ll).Nt{ii} = length(s(ll).target{ii});
end
end
%% Optimize
x0 = [6,17]; % init of Gamma resp. epsilon
xopt = fminsearch(@(x) local_evaldistbaumgartner2014parametrization(s,x),x0,...
optimset('Display','iter','MaxIter',50,'TolX',1)...
);
gamma = xopt(1);
epsilon = xopt(2);
end
function [distmetric] = local_evaldistbaumgartner2014parametrization(s,x)
gamma = x(1);
epsilon = x(2);
latseg = -60:20:60; % centers of lateral segments
%% Calibrate the sensitivity
kv.mrsmsp = epsilon;
kv.gamma = gamma;
kv.do = 1;
s = baumgartner2014_calibration(s,kv);
%% Total number of targets
Nt = zeros(length(s),1); %init
for ll = 1:length(s)
Nt(ll) = sum([s(ll).Nt{:}]);
end
Ntotal = sum(Nt);
%% LocaMo
dQEsq = 0;
dPEsq = 0;
for ll = 1:length(s)
Nt(ll) = sum([s(ll).Nt{:}]);
for ii = 1:length(latseg)
if s(ll).Nt{ii} > 0
s(ll).sphrtfs{ii} = 0; % init
s(ll).p{ii} = 0; % init
[s(ll).sphrtfs{ii},polang] = extractsp( latseg(ii),s(ll).Obj );
[s(ll).p{ii},respangs] = baumgartner2014(...
s(ll).sphrtfs{ii},s(ll).sphrtfs{ii},s(ll).Obj.Data.SamplingRate,...
'S',s(ll).S,'lat',latseg(ii),'polsamp',polang,...
'mrsmsp',epsilon,'gamma',gamma);
[ qe,pe ] = baumgartner2014_pmv2ppp( ...
s(ll).p{ii} , polang , respangs , s(ll).target{ii});
dQE_lat = qe - s(ll).qe_exp_lat(ii);
dPE_lat = pe - s(ll).pe_exp_lat(ii);
% Accumulate squared errors weighted by number of targets
dQEsq = dQEsq + dQE_lat.^2 * s(ll).Nt{ii}/Ntotal;
dPEsq = dPEsq + dPE_lat.^2 * s(ll).Nt{ii}/Ntotal;
end
end
end
[qe_chance,pe_chance] = baumgartner2014_pmv2ppp(ones(49,44));
distmetric = (dQEsq/qe_chance^2) + (dPEsq/pe_chance^2); % Joint distance metric of QE and PE (normalized by chance performance)
end