function sigma = baumgartner2016_comparisonprocess(tar,tem)
%BAUMGARTNER2016_COMPARISONPROCESS Comparison with direction-specific templates
% Usage: sigma = baumgartner2016_comparisonprocess(tar,tem)
%
% Input parameters:
% tar : discharge rate profiles of target sounds (fields: tar.m for
% magnitude and tar.sd for standard deviation)
% tem : discharge rate profiles of templates (fields as for tar)
%
% Output parameters:
% sigma : internal distance metric
%
% BAUMGARTNER2016_COMPARISONPROCESS(...) compares discharge rate profiles
% on the basis of the quotient between rate difference and auditory nerve
% variance (May and Huang, 1997; Reiss et al., 2011)
%
% References:
% B. J. May and A. Y. Huang. Spectral cues for sound localization in
% cats: A model for discharge rate representation in the auditory nerve.
% The Journal of the Acoustical Society of America, 101:2705--2719, 1997.
%
% L. A. J. Reiss, R. Ramachandran, and B. J. May. Effects of signal level
% and background noise on spectral representations in the auditory nerve
% of the domestic cat. Journal of the Association for Research in
% Otolaryngology, 12(1):71--88, 2011.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/modelstages/baumgartner2016_comparisonprocess.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: SOFA M-Signal M-Stats O-Statistics
% #Author: Robert Baumgartner (2016), Acoustics Research Institute, Vienna, Austria
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% Unbiased statistical index of rate discrimination acc. to Eq. 1 of
% may1997
sigma=zeros(size(tem.m,2),size(tar,2),size(tem.m,3),size(tem.m,4),size(tar,5)); % init
for itime = 1:size(tar.m,5)
for itang = 1:size(tar.m,2)
isd = repmat(tar.m(:,itang,:,:,itime),[1,size(tem.m,2),1,1]) - tem.m;
sd = sqrt( repmat(tar.sd(:,itang,:,:,itime),[1,size(tem.sd,2),1,1]).^2 + tem.sd.^2);
dprime = isd./sd;
sigma(:,itang,:,:,itime) = nanmean(abs(dprime),1);
end
end
end