function audNerve = may2011_neuraltransduction(bm,fs,haircellMethod)
%MAY2011_NEURALTRANSDUCTION calculates the auditory nerve response
%
% Input parameters:
% bm : matrix containing signals after auditory filtering
% fs : sampling frequency [Hz]
% haircellMethod : can be 'none', 'halfwave, 'roman', or 'envelope'
%
% Output parameters:
% audNerve : matrix containing the signals after inner hair cell processing
%
% MAY2011_NEURALTRANSDUCTION simulates the neural transduction in the inner ear
% by means of lowpass filtering of the signal envelope
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/modelstages/may2011_neuraltransduction.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal
% #Author: Tobias May (2014)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% Initialize persistent memory
persistent PERfs PERlowpass
%% *********************** CHECK INPUT ARGUMENTS ************************
% Check for proper input arguments
if nargin < 2 || nargin > 3
help(mfilename);
error('Wrong number of input arguments!');
end
% Set default values
if nargin < 3 || isempty(haircellMethod); haircellMethod = 'none'; end
%% ************************ NEURAL TRANSDUCTION *************************
%
% Wrapper for various models of neural transduction
%
switch lower(haircellMethod)
case 'none'
% No processing ...
audNerve = bm;
case 'halfwave'
% ----------------------
% PALOMAEKI 2004
% ----------------------
% Half-wave rectification
audNerve = max(bm,0);
case 'roman'
% ----------------------
% ROMAN 2003
% ----------------------
% Half-wave rectification and square-root compression
audNerve = sqrt(max(bm,0));
case 'envelope'
% Halfwave-rectification amd full envelope compression
%
% The envelope compression itself is from Bernsten, van de Par
% and Trahiotis (1996, especially the Appendix). The lowpass
% filtering is from Berstein and Trahiotis (1996, especially EQ 2
% on page 3781).
% Define lowpass filter
if (isempty(PERfs) || isempty(PERlowpass)) || ...
(~isempty(PERfs) && ~isequal(PERfs,fs))
% Define lowpass filter
cutoff = 425; %Hz
order = 4;
lpf = linspace(0, fs/2, 10000);
f0 = cutoff * (1./ (2.^(1/order)-1).^0.5);
lpmag = 1./ (1+(lpf./f0).^2) .^ (order/2);
lpf = lpf ./ (fs/2);
% Filter design
lowpass = fir2(256, lpf, lpmag, hamming(257));
% Store lowpass to persistent memory
PERfs = fs;
PERlowpass = lowpass;
else
% Reload lowpass from persistent memory
lowpass = PERlowpass;
end
% Envelope compression using Weiss/Rose lowpass filter
compress1 = 0.23;
compress2 = 2.0;
% ========================
% Do the actual processing
% ========================
% Get envelope
envelope = abs(hilbert(bm));
% compress the envelope to a power of compression1, while
% maintaining the fine structure.
compressedenvelope = (envelope.^(compress1 - 1)) .* bm;
% rectify that compressed envelope
rectifiedenvelope = max(compressedenvelope,0);
% raise to power of compress2
rectifiedenvelope = rectifiedenvelope.^compress2;
% Zero-padd data to compensate for the delay
[tmp,maxIdx] = max(abs(lowpass)); %#ok
rectifiedenvelope = [rectifiedenvelope;zeros(maxIdx-1,size(bm,2))];
% overlap-add FIR filter using the fft
audNerve = fftfilt(lowpass, rectifiedenvelope);
% Trim signal to its original length
audNerve = audNerve(maxIdx:end,:);
otherwise
error(['Neural transduction method ''',haircellMethod,...
''' is not supported.'])
end