function data = data_lopezpoveda2001(varargin)
%DATA_LOPEZPOVEDA2001 Data from Lopez-Poveda & Meddis (2001)
% Usage: data = data_lopezpoveda2001(flag)
%
% DATA_LOPEZPOVEDA2001(flag) returns data points from the paper by
% Lopez-Poveda and Meddis (2001).
%
% The flag may be one of:
%
% 'no_plot' Don't plot, only return data. This is the default.
%
% 'plot' Plot the data.
%
% 'fig2a' Data from Fig. 2(a), outer ear filter.
%
% 'fig2b' Data from Fig. 2(b), middle ear filter.
%
% For Fig. 2b you can choose between:
%
% 'goode' Return the data points derived from Goode et al. (1994)
% This is the default.
%
% 'lopezpoveda' Return the data points just read from Fig. 2b
% of Lopez-Poveda and Meddis (2001)
%
% Examples:
% ---------
%
% To display Figure 2a, use:
%
% data_lopezpoveda2001('fig2a','plot');
%
% To display Figure 2b, use:
%
% data_lopezpoveda2001('fig2b','plot');
%
% References:
% E. Lopez-Poveda and R. Meddis. A human nonlinear cochlear filterbank.
% The Journal of the Acoustical Society of America, 110:3107--3118, 2001.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/data/data_lopezpoveda2001.php
% #Author: Peter L. Søndergaard (2012)
% #Author: Katharina Egger
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% TODO: explain Data in description;
%% ------ Check input options --------------------------------------------
% Define input flags
definput.flags.plot = {'no_plot','plot'};
definput.flags.type = {'missingflag','fig2a','fig2b'};
definput.flags.datapoints = {'goode','lopezpoveda'};
% Parse input options
[flags,keyvals] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;
%% ------ Data points from the paper ------------------------------------
%
% Data for the given figure
if flags.do_fig2a
data=data_pralong1996;
if flags.do_plot
fs=22050;
bout=headphonefilter(fs);
% Manually calculate the frequency response.
fout = 20*log10(abs(fftreal(bout)));
% Half the filter length.
n2=length(fout);
figure;
hold on;
% Plot the measured data
x=data(:,1);
freqresp=20*log10(data(:,2));
semilogx(x,freqresp,'ro');
% Plot the filter
x_filter=linspace(0,fs/2,n2);
semilogx(x_filter,fout);
hold off;
end;
end;
if flags.do_fig2b
if flags.do_goode
% get peak-to-peak displacement data
data = data_goode1994;
% get velocity (proportional voltage) acc. to formula in Goode et al. (1994), page 147
data(:,2) = data(:,2) * 1e-6 * 2 * pi .* data(:,1);
% to get data at 0dB SPL (assumed that stapes velocity is linearly related to pressure
data(:,2) = data(:,2) * 10^(-104/20);
% to get stapes PEAK velocity, multiply amplitudes by sqrt(2)
data(:,2) = data(:,2).*sqrt(2);
% extrapolated data points, directly read from figure 2b) of Lopez-Poveda
% and Meddis (2001)
extrp = [100 1.181E-09; ...
200 2.363E-09; ...
7000 8.705E-10; ...
7500 8.000E-10; ...
8000 7.577E-10; ...
8500 7.168E-10; ...
9000 6.781E-10; ...
9500 6.240E-10; ...
10000 6.000E-10];
if flags.do_plot
figure;
loglog(data(:,1)/1000,data(:,2),'ok', 'MarkerFaceColor', 'k');
hold on
loglog(extrp(:,1)/1000,extrp(:,2),'ok');
xlabel('Frequency (kHz)');
ylabel('Stapes velocity (m/s) at 0dB SPL)');
axis([0.1,10,1e-10,1e-7]);
end;
data = [extrp(extrp(:,1) < data(1,1),:); data; extrp(extrp(:,1) > data(end,1),:)];
elseif flags.do_lopezpoveda
% data read from Poveda Fig.2, excl. extrapolated points
data = [400 4.728E-09; ...
600 7.577E-09; ...
800 1.000E-08; ...
1000 8.235E-09; ...
1200 6.240E-09; ...
1400 5.585E-09; ...
1600 5.000E-09; ...
1800 4.232E-09; ...
2000 3.787E-09; ...
2200 3.000E-09; ...
2400 2.715E-09; ...
2600 2.498E-09; ...
2800 2.174E-09; ...
3000 1.893E-09; ...
3500 1.742E-09; ...
4000 1.516E-09; ...
4500 1.117E-09; ...
5000 1.320E-09; ...
5500 1.214E-09; ...
6000 9.726E-10; ...
6500 9.460E-10];
% data read from Poveda Fig.2, extrapolated points
extrp = [100 1.181E-09; ...
200 2.363E-09; ...
7000 8.705E-10; ...
7500 8.000E-10; ...
8000 7.577E-10; ...
8500 7.168E-10; ...
9000 6.781E-10; ...
9500 6.240E-10; ...
10000 6.000E-10];
data = [extrp(extrp(:,1) < data(1,1),:); data; extrp(extrp(:,1) > data(end,1),:)];
if flags.do_plot
figure;
loglog(data(:,1)/1000,data(:,2),'ok', 'MarkerFaceColor', 'k');
hold on
loglog(extrp(:,1)/1000,extrp(:,2),'ok');
xlabel('Frequency (kHz)');
ylabel('Stapes velocity (m/s) at 0dB SPL)');
axis([0.1,10,1e-10,1e-7]);
end;
end
end;