THE AUDITORY MODELING TOOLBOX

This documentation applies to the most recent AMT version (1.6.0).

View the code

Go to function

zilany2014
Nonlinear model of auditory periphery (improved version)

Usage:

[r_mean,fc] = zilany2014(stim,fsstim, fc);
[r_mean,psth,ihc,c1,c2,r_var,output] = zilany2014(stim,fsstim, fc);

Input parameters:

stim Audio signal (in Pa). Size: time.
fsstim Sampling frequency (in Hz) of stimulus.
fc Vector with the requested center frequencies (CFs). Use fc=audspace(lo,hi,numCF,'erb'); to space equally on the ERB scale.

Output parameters:

r_mean Instantaneous mean spiking rate (incl. refractoriness) of various AN fibers at corresponding CFs. Size: (time x fc).
psth Peri-stimulus histogram.
ihc Output from inner-hair cells (IHCs, in Volts).
c1 Output from the chirping filter C1.
c2 Output from the chirping filter C2.
r_var Instananeous variance in the discharge rate of the ANs.
output

Optional structure with further details:

  • meanrate_LSR: Average firing rates of the LSR fibres.
  • meanrate_MSR: Average firing rates of the MSR fibres.
  • meanrate_HSR: Average firing rates of the HSR fibres.
  • psth_LSR: Peri-stimulus histogram of the LSR fibres.
  • psth_MSR: Peri-stimulus histogram of the MSR fibres.
  • psth_HSR: Peri-stimulus histogram of the HSR fibres.

Description:

zilany2014(..) returns modeled responses of multiple AN fibers tuned to various characteristic frequencies (CFs). Middle-ear filtering is included and corresponds to middleearfilter(...,'zilany2009');

zilany2014(..) takes the following optional key-value pairs:

'fsmod',fsmod Model sampling rate. It is possible to run the model at a range of fsmod between 100 kHz and 500 kHz. Default value is 200kHz for cats and 100kHz for humans.
'fiberType',fT

Type of the fiber based on spontaneous rate (SR):

  • 1: Low SR, SR fixed to 0.1 spikes/s.
  • 2: Medium SR, SR fixed to 4 spikes/s.
  • 3: High SR, SR fixed to 100 spikes/s.
  • 4: Custom, defined by the fibre numbers in 'numH', 'numM', and 'numL'.
'numH' Number of high SR fibres. Only if 'fiberType' is 4.
'numM' Number of medium SR fibres. Only if 'fiberType' is 4.
'numL' Number of low SR fibres. Only if 'fiberType' is 4.
'cohc',cohc

OHC scaling factor:

  • 1 denotes normal OHC function. Default.
  • 0 denotes complete OHC dysfunction.
'cihc',cihc

IHC scaling factor:

  • 1 denotes normal IHC function. Default.
  • 0 denotes complete IHC dysfunction.
'nrep',nrep Number of repetitions for the calculation of the mean rate, the rate variance, and the PSTH.

zilany2014(..) also accepts the following flags:

'human' Use model parameters for humans. Default.
'cat' Use model parameters for cats. Opposite of 'human'.
'fixedFGn' Fractional Gaussian noise will be the same in every simulation. Default.
'varFGn' Fractional Gaussian noise will be different in every simulation. Opposite of 'fixedFGn'.
'approxPL' Use approxiate implementation of the power-law functions. Default.
'actualPL' Use actual implementation of the power-law functions. Opposite of 'approxPL'.
'shera2002' Selects the BM tuning from Shera et al. (2002). Default.
'glasberg1990' Selects the BM tuning from Glasberg & Moore (1990). Opposite of 'shera2002'.
'progress' Display the calculation progress. Default.
'silent' No progress display. Opposite of 'progress'.

References:

C. A. Shera, J. J. J. Guinan, and O. A. J. Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America, 99(5):3318--3323, 2002. [ http ]

B. R. Glasberg and B. Moore. Derivation of auditory filter shapes from notched-noise data. Hearing Research, 47(1-2):103--138, 1990.

M. S. A. Zilany, I. C. Bruce, and L. H. Carney. Updated parameters and expanded simulation options for a model of the auditory periphery. The Journal of the Acoustical Society of America, 135(1):283--286, Jan. 2014. [ DOI ]

M. Zilany, I. Bruce, P. Nelson, and L. Carney. A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics. The Journal of the Acoustical Society of America, 126(5):2390 -- 2412, 2009.