y = zilany2014_ffGn(N, tdres, Hinput) y = zilany2014_ffgn(N, tdres, Hinput, noiseType, mu, sigma)
N | Length of the output sequence. |
tdres | Time resolution (in s, 1/sampling rate). |
H | "Hurst" index of the resultant noise. Must be 0 < H \(\leq\) 2). Determines the power spectral density of the output, which will be nominally proportional to \(1/f^{(2H-1)}\):
|
noiseType | Optional type of the noise:
|
mu | Optional mean of the noise. Default: 0. |
sigma | Optional standard deviation of the noise. Default: 1. |
zilany2014_ffGn(...) returns a vector containing a sequence of fractional Gaussian noise or fractional Brownian motion. The generation process uses an FFT which makes it very fast. This method is based on an embedding of the covariance matrix in a circulant matrix.
M. S. A. Zilany, I. C. Bruce, and L. H. Carney. Updated parameters and expanded simulation options for a model of the auditory periphery. The Journal of the Acoustical Society of America, 135(1):283--286, Jan. 2014. [ DOI ]
R. Davies and D. Harte. Tests for hurst effect. Biometrika, 74(1):95 -- 101, 1987.
J. Beran. Statistics for long-memory processes, volume 61. CRC Press, 1994.
J. Bardet. Statistical study of the wavelet analysis of fractional brownian motion. Information Theory, IEEE Transactions on, 48(4):991--999, 2002.