function [varargout] = barumerli2023_metrics(varargin)
%BARUMERLI2023_METRICS extract localization metrics
% Usage: metrics = barumerli2023_metrics(m, 'middle_metrics')
% metrics = barumerli2023_metrics(m, metric)
%
% Input parameters:
% m : (matrix) table organized as in localizationerror with actual
% and predicted directions. The model barumerli2023 can
% output directly such matrix.
%
% metric : (string) string indicating which metric has to be computed.
%
%
% Output parameters (optional):
% varagout : output as in localizationerror-m. If 'middle_metrics' is
% provided then a struct will be provided.
%
% BARUMERLI2023_METRICS(...) returns psychoacoustic performance
% parameters for experimental response patterns.
% This script is a wrapper for localizationerror. This function is also
% used internally in barumerli2023 which behavior is not here
% described.
% For a complete list of supported metrics, please consider localizationerror. Moreover,
% if 'middle_metrics' is provided the function returns a struct
% containing the four metrics used in the paper Middlebrooks (1999).
% There are: accuracy and root mean squared error for both
% the lateral and polar dimensions and the quadrant error.
%
% See also: demo_barumerli2023 barumerli2023 localizationerror
%
% References:
% P. Majdak, M. J. Goupell, and B. Laback. 3-D localization of virtual
% sound sources: Effects of visual environment, pointing method and
% training. Atten Percept Psycho, 72:454--469, 2010.
%
% J. C. Middlebrooks. Virtual localization improved by scaling
% nonindividualized external-ear transfer functions in frequency. The
% Journal of the Acoustical Society of America, 106:1493--1510, 1999.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/modelstages/barumerli2023_metrics.php
% #StatusDoc: Good
% #StatusCode: Submitted
% #Verification: Unknown
% #Requirements: MATLAB SOFA M-STATISTICS M-Control M-Signal
% #Author: Roberto Barumerli (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% parameters
% m, 'middle_metrics' return middlebrooks metrics as a struct
% doa, doa_real, 'm' return m matrix
% doa, doa_real, <error> compute error from `localizationerror`
% m, <error> as above
if strcmp(varargin{2}, 'middle_metrics')
assert(size(varargin{1}, 2) == 8, 'Please provide m matrix')
m = varargin{1};
% lateral_bias
exp.accL = localizationerror(m, 'accL');
% lateral_rms_error
exp.rmsL = localizationerror(m, 'rmsL');
% elevation_bias
exp.accP = localizationerror(m, 'accP');
% local_rms_polar
exp.rmsP = localizationerror(m, 'rmsPmedianlocal');
% quadrant_err
exp.querr = localizationerror(m, 'querrMiddlebrooks');
% gain
exp.gainP = localizationerror(m, 'gainP');
varargout{1} = exp;
elseif strcmp(varargin{3}, 'm')
assert(isfield(varargin{1}, 'estimations') & isa(varargin{2}, 'barumerli2023_coordinates'), 'If looking for m matrix please give doa as a struct and doa_real as barumerli2023_coordinates object(see barumerli2023)')
varargout{1} = local_returnmatrixlocalizationerror(varargin{1}, varargin{2});
else
if isfield(varargin{1}, 'estimations') && isa(varargin{2}, 'barumerli2023_coordinates')
m = local_returnmatrixlocalizationerror(varargin{1}, varargin{2});
errorflag = varargin{3};
elseif size(varargin{1}, 2) == 8
m = varargin{1};
errorflag = varargin{2};
else
error('something went wrong!')
end
[varargout{1}, meta, par] = localizationerror(m, errorflag);
if length(varargout) > 1
varargout{2}=meta;
end
if length(varargout) > 2
varargout{3}=par;
end
end
function m = local_returnmatrixlocalizationerror(doa, doa_real)
assert(size(doa.estimations, 3) == 3)
doa_est_cart = barumerli2023_coordinates(reshape(doa.estimations, [], 3), 'cartesian');
%% compute the metric relying on `localizationerror`
doa_real_sph = doa_real.return_positions('spherical');
doa_est_sph = doa_est_cart.return_positions('spherical');
doa_real_hor = doa_real.return_positions('horizontal-polar');
doa_est_hor = doa_est_cart.return_positions('horizontal-polar');
num_rep = size(doa_est_cart.pos, 1)/size(doa_real.pos, 1);
m = zeros(size(doa_real.pos, 1)*num_rep, 8);
m(:, 1:2) = repmat(doa_real_sph(:, [1 2]), num_rep, 1);
m(:, 3:4) = doa_est_sph(:, [1 2]);
m(:, 5:6) = repmat(doa_real_hor(:,[1 2]), num_rep, 1);
m(:, 7:8) = doa_est_hor(:, [1 2]);