function CF = lyon2011_design(n_ears, fs, CF_CAR_params, CF_AGC_params, CF_IHC_params)
%lyon2011_design Computes all the coefficients needed to run the model
%
% Usage:
% CF = lyon2011_design(n_ears, fs, CF_CAR_params, CF_AGC_params, CF_IHC_params)
%
%
% Input parameters:
% n_ears : Number of input signals
% fs : Sampling frequency (Hz)
% CF_CAR_params : A struct with the pole-zero filter cascade parameters
% CF_AGC_params : A struct with the automatic gain control parameters
% CF_IHC_params : A struct with the inner hair cell parameters
%
% Output parameters:
% CF : filter coefficients
%
%
% CF_CAR_params consists of the following field, among others:
%
% 'ac_corner_Hz',ac_corner_Hz Corner frequency (Hz) of the high-pass filter in the
% CAR stage (e.g., at basilar membrane). Set ac_corner_Hz
% to a non-zero to enable the filter in CAR stage.
% Set ac_corner_Hz to 0 to disable the filter.
% Default is 0, i.e., enabled in the IHC stage.
% The filter should be enabled either in CAR or IHC stage.
%
%
% CF_IHC_params consists of the following field, among others:
%
% 'ac_corner_Hz',ac_corner_Hz Corner frequency (Hz) of the high-pass filter in the
% IHC stage. Set ac_corner_Hz
% to a non-zero to enable the filter in IHC stage.
% Set ac_corner_Hz to 0 to disable the filter.
% Default is 20, i.e., enabled in the IHC stage.
% The filter should be enabled either in CAR or IHC stage.
%
%
% See also: lyon2011 demo_lyon2011
%
% References:
% R. F. Lyon. Cascades of two-pole–two-zero asymmetric resonators are
% good models of peripheral auditory function. The Journal of the
% Acoustical Society of America, 130(6), 2011.
%
%
% Url: http://amtoolbox.org/amt-1.6.0/doc/modelstages/lyon2011_design.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #License: Apache2
% #Author: Richard F. Lyon (2013): original implementation (https://github.com/google/carfac)
% #Author: Amin Saremi (2016): adaptations for the AMT
% #Author: Clara Hollomey (2021): integration in the AMT 1.0
% #Author: Mihajlo Velimirovic (2022): Addition of open_loop, linear_car, OHC_health, and a new design strategy
% #Author: Mihajlo Velimirovic (2023): Addition of ac_coeff and a new way of calculating the decimation
% #Author: Mihajlo Velimirovic (2023): Local functions removed and support for lyon2024 added.
% #Author: Piotr Majdak (2024): rudimentary clean up for the AMT 1.6
% This file is licensed unter the Apache License Version 2.0 which details can
% be found in the AMT directory "licences" and at
% <http://www.apache.org/licenses/LICENSE-2.0>.
% You must not use this file except in compliance with the Apache License
% Version 2.0. Unless required by applicable law or agreed to in writing, this
% file is distributed on an "as is" basis, without warranties or conditions
% of any kind, either express or implied.
if nargin < 1
n_ears = 1; % if more than 1, make them identical channels;
% then modify the design if necessary for different reasons
end
if nargin < 2
fs = 22050;
end
if nargin < 3
CF_CAR_params = struct( ...
'velocity_scale', 0.1, ... % for the velocity nonlinearity
'v_offset', 0.04, ... % offset gives a quadratic part
'min_zeta', 0.10, ... % minimum damping factor in mid-freq channels
'max_zeta', 0.35, ... % maximum damping factor in mid-freq channels
'first_pole_theta', 0.85*pi, ...
'zero_ratio', sqrt(2), ... % how far zero is above pole
'high_f_damping_compression', 0.5, ... % 0 to 1 to compress zeta
'ERB_per_step', 0.5, ... % assume G&M's ERB formula
'min_pole_Hz', 30, ...
'ERB_break_freq', 165.3, ... % 165.3 is Greenwood map's break freq.
'ERB_Q', 1000/(24.7*4.37), ... % Glasberg and Moore's high-cf ratio
'ac_corner_Hz', 0); % to enable high-pass filter in CAR stage, set to 20.
end
if nargin < 4
CF_AGC_params = struct( ...
'n_stages', 4, ...
'time_constants', 0.002 * 4.^(0:3), ...
'AGC_stage_gain', 2, ... % gain from each stage to next slower stage
'decimation', [8, 2, 2, 2], ... % how often to update the AGC states
'AGC1_scales', 1.0 * sqrt(2).^(0:3), ... % in units of channels
'AGC2_scales', 1.65 * sqrt(2).^(0:3), ... % spread more toward base
'AGC_mix_coeff', 0.5);
end
if nargin < 5
% HACK: these constants control the defaults
one_cap = 1; % bool; 1 for Allen model, as text states we use
just_hwr = 0; % bool; 0 for normal/fancy IHC; 1 for HWR
CF_IHC_params = struct( ...
'just_hwr', just_hwr, ... % not just a simple HWR
'one_cap', one_cap, ... % bool; 0 for new two-cap hack
'ac_corner_Hz', 20, ... % to enable high-pass in IHC, set to 20
'tau_lpf', 0.000080, ... % 80 microseconds smoothing twice
'tau_out', 0.0005, ... % depletion tau is pretty fast
'tau_in', 0.010, ... % recovery tau is slower
'tau1_out', 0.000500, ... % depletion tau is fast 500 us
'tau1_in', 0.000200, ... % recovery tau is very fast 200 us
'tau2_out', 0.001, ... % depletion tau is pretty fast 1 ms
'tau2_in', 0.010); % recovery tau is slower 10 ms
end
% first figure out how many filter stages (PZFC/CARFAC channels):
pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
n_ch = 0;
while pole_Hz > CF_CAR_params.min_pole_Hz
n_ch = n_ch + 1;
pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
f2erb(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
end
% Now we have n_ch, the number of channels, so can make the array
% and compute all the frequencies again to put into it:
pole_freqs = zeros(n_ch, 1);
pole_Hz = CF_CAR_params.first_pole_theta * fs / (2*pi);
for ch = 1:n_ch
pole_freqs(ch) = pole_Hz;
pole_Hz = pole_Hz - CF_CAR_params.ERB_per_step * ...
f2erb(pole_Hz, CF_CAR_params.ERB_break_freq, CF_CAR_params.ERB_Q);
end
% Now we have n_ch, the number of channels, and pole_freqs array.
max_channels_per_octave = log(2) / log(pole_freqs(1)/pole_freqs(2));
% Convert to include an ear_array, each w coeffs and state...
CAR_coeffs = lyon2011_designfilters(CF_CAR_params, fs, pole_freqs);
AGC_coeffs = lyon2011_designagc(CF_AGC_params, fs, n_ch);
IHC_coeffs = lyon2011_designihc(CF_IHC_params, fs, n_ch);
if ~xor(CAR_coeffs.ac_coeff > 0, IHC_coeffs.ac_coeff > 0)
error('ac_corner_Hz should be set at exactly one place (CAR stage or IHC).');
end
% Copy same designed coeffs into each ear (can do differently in the
% future, e.g. for unmatched OHC_health).
for ear = 1:n_ears
ears(ear).CAR_coeffs = CAR_coeffs;
ears(ear).AGC_coeffs = AGC_coeffs;
ears(ear).IHC_coeffs = IHC_coeffs;
end
CF = struct( ...
'fs', fs, ...
'max_channels_per_octave', max_channels_per_octave, ...
'CAR_params', CF_CAR_params, ...
'AGC_params', CF_AGC_params, ...
'IHC_params', CF_IHC_params, ...
'n_ch', n_ch, ...
'pole_freqs', pole_freqs, ...
'ears', ears, ...
'n_ears', n_ears, ...
'open_loop', 0, ...
'linear_car', 0);